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I. INTRODUCTION  

In the field of computer vision and image processing, 
neural networks improve their performance noticeably. Im-
age reconstruction restores an original image by referring 
to given information such as reference pixels. Image recon-
struction can be applied to various fields such as intra pre-
diction for video coding, inpainting, and super-resolution. 
Video coding standards such as AVC [1], HEVC [2], and 
VVC [3] provide intra modes to reconstruct the image spa-
tially. joint photographic experts group (JPEG) has been 
promoting the establishment of JPEG-AI, a new image cod-
ing standard through artificial intelligence including picture 
prediction since 2019 [4]. 

Studies for image reconstruction have been conducted as 
follows. Convolutional Neural Networks (CNNs) are uti-
lized to obtain local features and to convert feature domain 
to pixel domain for reconstructing the image. Palmprint re-
construction attack methods [5-7] reconstruct the images to 
modify the given template images through CNN layers. 
CNN-based Methods [8-11] reconstruct each pixel of an 
image by extracting features for a local region. However, 
these methods have a problem that the same weights are 
given to the reference pixels although some pixels have low  

correlation. Sequential pixels in a certain direction can be 
handled through recurrent neural network (RNN) and Long 
Short-Term Memory (LSTM) [12] that process arbitrary se-
quences of inputs. RNN-based methods [13-14] predict a 
pixel through previous consecutive pixels in a vertical or 
horizontal direction. However, these networks cause gradi-
ent vanishing and exploding in training due to their recur-
sive structure [15]. Therefore, RNN has a long term de-
pendency problem that correlation information is forgotten 
between two elements whose distance are far. Attention 
mechanism [16] can solve this problem. Attention mecha-
nism is originally used in natural language processing (NLP) 
for finding the correlation between tokens embedding each 
word. Attention mechanism is also applied to computer vi-
sion [17-19]. Methods based on attention mechanism has 
similar or superior performance to the CNN-based methods. 
Masked autoencoder (MAE) [20] proposes a training 
method for a ViT-based network by masking some random 
patches and restructuring them in order to improve the per-
formance.  

In this paper, we propose a block reconstruction method 
by extracting the spatial features of reference pixels and 
predicting the spatial features of a target block. Vertical and 
horizontal spatial features are extracted through CNN lay-
ers from top and left adjacent blocks, respectively. Atten-
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tion layers predict the spatial features of a target block by 
finding a correlation between the target block and the refer-
ence pixels. Finally, the pixels of the target block are recon-
structed by converting spatial feature domain to pixel do-
main through CNN layers. 

 

II. RELATED WORKS 

2.1. Neural Networks for Spatial Feature Extraction 
RNN has a recursive structure to process sequential data. 

The output of an RNN cell is back to itself so it is called a 
'hidden state'. The hidden state preserves the features of pre-
vious inputs. RNN processes the inputs through the hidden 
state in a certain step. The types of RNNs are vanilla RNN, 
LSTM [12], and Gated Recurrent Unit (GRU) [21]. The 
structure of vanilla RNN is simple, but it has the problem 
of long-term dependency that means losing the features of 
old inputs. LSTM introduces long-term and short-term 
states in order to prevent the long-term dependency prob-
lem. The short-term state is similar to the hidden state in 
vanilla RNN. The long-term state forgets a part of itself and 
adds a part of the short-term state in each step. The features 
of the old inputs can be preserved through the long-term 
state. GRU is the simplified structure of LSTM. In GRU, 
the short-term and long-term states in LSTM are integrated 
into one hidden state. In GRU, a part of the hidden state is 
forgotten or added in each step.  

Pixels in an image can be regarded as time-series data. 
Therefore, spatial features can be extracted from pixels in a 
vertical or horizontal direction through RNN. Y. Hu et al. 
[13] propose an intra prediction method through RNN lay-
ers with various input sizes. The region of reference pixels 
is scaled to the input sizes. PS-RNN [14] predicts the visual 
features of the reference pixels through CNN layers. The 
spatial features are extracted through RNN layers guided by 
visual features. The pixels of the block are predicted by 
converting the spatial features to pixel domain. However, 
training the RNN-based network known to be difficult due 
to a gradient vanishing or exploding caused by its recursive 
structure [15].  

CNN is also utilized to extract the spatial features. CNN 
kernels for extracting the spatial features is not square 
shaped but its height or width is equal to the inputs. The 
kernels can extract the spatial features in the vertical or hor-
izontal direction. Lee and Kwon [22] extract the spatial fea-
tures of top and left blocks through CNN layers in order to 
predict the clusters of pixels in a block. Li et al. [23] find 
the spatial features for an electrical impedance tomography 
to reconstruct its 3D shape. 
 
2.2. Attention Mechanism for Image 

Attention mechanism [16] can selectively focus on the 

various elements of the inputs, giving more importance to 
some elements. Attention has three inputs: query, key, and 
value. The query is an input feature. The key and value are 
pairs of features corresponding to the query and actual 
value, respectively. The value is weighted according to sim-
ilarities between the query and key. Self-attention, whose 
inputs are the same, is utilized to predict correlations be-
tween each element in the input data itself.  

Attention mechanism can be applied not only to natural 
language processing (NLP) but also to image processing. 
CNN is specialized in extracting image features in local ar-
eas, so it has a disadvantage that it is difficult to detect a 
correlation between two distant pixels. On the other hand, 
attention can find the correlations for all inputs, so the cor-
relation between two distant pixels can be better detected. 
Vision Transformation (ViT) [17] classifies an object in an 
image through encoder networks composed of attention 
layers. The input image is divided into multiple blocks. The 
image features are updated by sequentially inputting the 
blocks into the encoder network. The pixels are regarded as 
embedded words in NLP. Video Transformer Network 
(VTN) [18] extracts the spatial features of a video through 
ViT and detects temporal features through a temporal atten-
tion-based encoder. Attention mechanism can better extract 
global image features than CNN. However, attention mech-
anism requires a large amount of data for a network training. 

 

III. IMAGE RECONSTRUCTION 
METHOD BY SPATIAL FEATURE 

PREDICTION  

We propose a block reconstruction method by referring 
adjacent blocks through CNN and attention layers. For a 
m×m target block in an image, top and left adjacent blocks 
of the same size are designated as reference pixels. The ref-
erence pixels are utilized to obtain vertical and horizontal 
spatial features, respectively, through CNN layers. Atten-
tion mechanism is applied to predict spatial correlations be-
tween the target block and the reference pixels. The pixels 
of the target block are reconstructed through the spatial cor-
relations. Fig. 1 shows the flow of the proposed method.  

   
3.1. Spatial Feature Extraction from Reference Pixels 

Using CNN 
The spatial feature maps for the top and left block are 

extracted for predicting the spatial features of the target 
block. For the top and left block, CNN layers extract f local 
spatial features. Then, vertical spatial features are obtained 
through a CNN layer with a size of m×3 and that is applying 
only a horizontal padding. Fig. 2 illustrates the structure of 
the extraction module for extracting the spatial features. 

The module can extract the vertical spatial feature map  
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for the top block. The same module can be utilized to ex-
tract horizontal spatial features by transposing the left block 
before inputting it to the extracting module. This reduces 
the number of the network weights and improves a network 
learning efficiency. Fig. 3 shows the spatial feature extrac-
tion for the top and left blocks. 

The two spatial feature maps are merged for applying at-
tention mechanism. A dimension for a vertical direction is 
added into both the two m×f spatial feature maps, then the 
dimensions of these become m×1×f. The values of the spa-
tial feature maps are duplicated m times in the vertical di-
rection. The spatial feature map for the left block is trans-
posed to have the same value for the same row. The two 

spatial feature maps are concatenated along the feature di-
mension. Then, the dimensions are merged for vertical and 
horizontal directions. Merging the spatial feature maps is 
represented as follows: 

  𝐹ሺ𝑖, 𝑗, 𝑘ሻ ൌ ൜𝑆௏ሺ𝑗, 𝑘ሻ, 𝑖𝑓 𝑘 ൐ 𝑓𝑆ுሺ𝑖, 𝑘ሻ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒ሺ0 ൏ 𝑖, 𝑗 ൑ 𝑚, 0 ൏ 𝑘 ൑ 2𝑓ሻ ,  (1)

  

where F is the m2×f matrix for the merged spatial features, 
SV and SH are the spatial feature maps of the top and left 
blocks, respectively, i and j are spatial coordinates, respec-
tively, and k is the index of the feature dimension. Fig. 4 
shows the flow of merging the spatial feature maps. 
  
3.2. Spatial Correlation Prediction Using Attention  

An attention module for detecting the correlations about 
the inputs consists of an attention, a feed-forward neural 
network (FFNN), and a normalization as shown in Fig. 5. 
The attention module has three inputs for the query, key, 
and value. The first and second dimensions of the input re-
fer to the lengths of element and feature, respectively. The 
input sizes of the key are equal to the value. The feature 
lengths of the attention inputs are the same. The output size 
of the attention module is equal to the input. 

The inputs are required to be converted in order to cor-
rectly find the correlations. The m×f attention input can be 
converted through matrix multiplication with f×f sized 
learnable tables as shown in Fig. 6. A dot product is per-
formed between each row of the input and each column of 
the table, then the input is converted to better represent the 
correlation. It is similar to embedding each word in NLP. 
The three inputs are converted through referring the tables 
as follows: 

  𝑄 ൌ 𝑋ொ ⊗ 𝑊ொ𝐾 ൌ 𝑋௄ ⊗ 𝑊௄𝑉 ൌ 𝑋௏ ⊗ 𝑊௏, (2)

 
Fig. 1. Flow of the proposed method. 

  

Fig. 2. Structure of extraction module for extracting spatial fea-
tures. 

 
  

Fig. 3. Spatial feature extractions for top and left blocks through
the same module. 
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where XQ, XK, and XV are the query, key, and value, respec-
tively, and ⊗ is a matrix product operator. An attention 
score, which is a correlation between the query and the key, 
is calculated through dot products of Q and K as follows: 
  𝑠𝑐𝑜𝑟𝑒 ൌ 𝑄⊗𝐾Tඥ𝑓 . (3)
  

The matrix product between Q and transposed K is equal 
to the dot products between rows of Q and K. The matrix 
product result is divided into f in order to make the attention 
score less affected by the feature length. The attention score 
can be converted as probabilities for elements through soft-
max function. The weighted sums of the value are calcu-
lated through the probabilities as follows: 
   𝑍 ൌ softmaxሺ𝑠𝑐𝑜𝑟𝑒ሻ ⊗ 𝑉. (4)

  

Fig. 7 illustrates the flow of attention though equations 

(3)−(4). A feed-forward neural network (FFNN) makes the 
attention results non-linear. The FFNN consists of two 
fully-connected layers as follows: 

  FFNNሺ𝑍ሻ ൌ 𝛼ଶ ⊙ ൫𝜎ሺ𝛼ଵ ⊙ 𝑍 ൅ 𝛽ଵሻ൯ ൅ 𝛽ଶ, (5)
  

where 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ are learnable matrices, ⊙ is an ele-
ment-wise product operator, and 𝜎ሺ∙ሻ  is an activation 
function. In the proposed method, the activation function is 
a parametric rectified linear unit (PReLU). The output of 
PReLU is equal to its input if the input is positive, otherwise 
it is the input multiplied by a learnable variable a as follows: 

  PReLUሺ𝑥ሻ ൌ ൜ 𝑥, 𝑖𝑓 𝑥 ൐ 0𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (6)
   

XQ is added to the result of equation (5), that is a residual 
block. It leads an output close to 0. Then, layer normaliza-
tion is applied. The residual block and layer normalization 
improve a network training. We express the series processes 
in the attention module in equations (2)−(5) as attn. (XQ, XK, XV).  

 
  
Fig. 4. Flow of merging spatial feature maps. 

 
  

Fig. 5. Structure of attention module. 

 

Fig. 6. Input conversion before attention. 

 

Fig. 7. Flow of attention mechanism. 
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For the target block, self-attention is applied n times to 
predict the correlation between pixels in the target block. 
The multiple attentions obtain both the global and local 
correlations of the input block. A following equation rep-
resents the pth result of self-attention: 

 

 𝑆௧௔௥௚௘௧௣ ൌ attnሺ𝑆௧௔௥௚௘௧௣ିଵ , 𝑆௧௔௥௚௘௧௣ିଵ , 𝑆௧௔௥௚௘௧௧ିଵ ሻ൫0 ൏ 𝑝 ൑ 𝑛, 𝑆௧௔௥௚௘௧଴ ൌ 𝐹൯,  (7)

 

where 𝑆௧௔௥௚௘௧௣  is the pth result of self-attention. The cor-
relations between the pixels of the target block and the 
reference pixels are predicted as follows: 

 𝐴 ൌ attn൫𝑆௧௔௥௚௘௧ ௡ , 𝑆௥௘௙, 𝑆௥௘௙൯, (8)
 

where A is a m2×f correlation map between the target 
block and the reference pixels and Sref is a 2m×f map 
which is concatenated between SV and SH as follows: 

  𝑆௥௘௙ሺ𝑖, 𝑘ሻ ൌ ൜𝑆௏ሺ𝑖, 𝑘ሻ, 𝑖𝑓 𝑘 ൐ 𝑓𝑆ுሺ𝑖, 𝑘ሻ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒ሺ0 ൏ 𝑖 ൑ 𝑚, 0 ൏ 𝑘 ൑ 2𝑓ሻ .  (9)

 
3.3. Pixel Reconstruction through Correlation of Spa-

tial Features 
The first dimension of A is divided into two dimensions 

m×m. Then, the feature dimension is reduced through four 
CNN layers with 1×1 kernel size. PReLU is utilized as ac-
tivation functions for the layers except the last. The activa-
tion function of the last layer is Sigmoid whose output is 
between 0 and 1. Fig. 8 shows the structure of the layers for 
the pixel reconstruction. 
 
3.4. Dataset and Network Training 

For training the proposed network, several videos are uti-
lized. Frames in each video with a gap of 20 are divided 
into 2m×2m blocks. Each block is included in the dataset 

for the network training if it satisfies a following conditions: 
  max൫𝐵௧௢௣൯ െ min൫𝐵௧௢௣൯ ൏ 𝑡max൫𝐵௟௘௙௧൯ െ min൫𝐵௟௘௙௧൯ ൏ 𝑡max൫𝐵௧௔௥௚௘௧൯ െ min൫𝐵௧௔௥௚௘௧൯ ൏ 𝑡, (10)

  

where Btop, Bleft, and Btarget are the top, left, and target blocks, 
respectively, maxሺ∙ሻ and minሺ∙ሻ are the maximum and 
minimum pixel values of the block, respectively, and t is a 
threshold. Equation (10) means that blocks whose pixels 
have similar colors are excluded from the dataset in order 
to increase learning efficiencies. Fig. 9 shows the samples 
of the block for the network training. For a total of 120,000 
blocks in the dataset, the 100,000 blocks are utilized to train 
the proposed network and the others are to verify it. A loss 
function for the network training is a mean square error 
(MSE) between the target block and the reconstructed block.  
  

Ⅳ. SIMULATION RESULTS  

For the comparisons of the reconstruction accuracies by 
the network parameters m, f, and n, we measure reconstruc-
tion MSEs for the validation set in the dataset. The default 
m, f, and n are 16, 24, and 6, respectively. t in equation (10) 
is specified as 50. The hyper parameters for the network 
training are as follows: the number of a batch size, the num-
ber of epochs, and a learning rate are 128, 300, and 1×10−3, 
respectively.  

Table 1 shows the reconstruction MSEs by the number 
of self-attention times n. The errors of the block reconstruc-
tion tend to reduce as n increases. The optimal n is 6 with 
an MSE of 254.33. When n is 8, the network performance 
is rather worse. If n overly increases, it leads to overfit dur-
ing network training due to excessive complexity. 

Table 2 describes the MSEs by the number of the spatial 
features f. The reconstruction accuracy of the proposed net-
work increases as the spatial features are more. However,  

Table 1. Reconstruction MSEs by the number of self-attention 
times. 

n 1 2 4 6 8 
MSE 364.28 270.28 259.38 254.33 257.80

 

Fig. 8. CNN layers for pixel reconstruction. 

 

Fig. 9. Samples of block for network training. 
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the accuracy increase rate is reduced if f is greater than 24. 
Although the reconstruction accuracy is better for larger f, 
the network complexity also increases.  

Table 3 shows the MSEs by the target block size m. The 
block reconstruction is harder as the block size is larger. It 
is more difficult to find the spatial correlations between the 
reference pixel and the target block as the block size larger. 

We evaluate the proposed network by comparing predic-
tion results through the intra modes of video coding stand-
ard. The intra modes reconstruct a block using adjacent top 
and left pixels, similar to the proposed method. Several 
video coding standards such as AVC, HEVC, and VVC 
provide various intra modes. The intra modes of VVC, 
which is a state-of-the-art video coding standard, is chosen 
for the performance comparison with the proposed method. 
The intra modes are classified into following the type of re-
ferring to adjacent pixels: DC mode, planar mode, and an-
gular mode. DC mode reconstructs the block as the average 
of the reference pixels. In planar mode, the pixel value of 
the block is calculated through a linear interpolation in hor-
izontal and vertical directions. Angular mode reconstructs 
each pixel in the block with the reference pixels located at 
a specified angle by a mode index. VVC has 67 intra modes 
including a DC mode, a planar mode, and 65 angular 
modes. VVC selects the best reconstruction results of its in-
tra modes. 

We measure the accuracies of the proposed network for 
the first frames of 7 actual videos as shown in Fig. 10. The 
frame is divided into several 32×32 blocks. For each block, 
MSEs are calculated by selecting best methods among the 

VVC intra modes and the proposed method. Table 4 shows 
the comparisons of the MSEs with reconstructing by only 
the VVC intra modes. The proposed network reduces the 
average MSE by about 14.8%. The proposed method more 
accurately reconstructs the blocks than VVC intra modes 
for at least 27% of the blocks. 

Fig. 11 shows reconstruction results by the proposed net-
work. In Fig. 11, the first row is 32×32 input blocks which 
are masked for 16×16 target blocks, the second row is 
ground truths, that are target blocks, the third and fifth are 
the reconstruction results by the proposed method and by 
VVC intra modes, respectively, and the fourth and sixth 
rows are the errors between the reconstruction results and 
the ground truth. The proposed network further improves 
the accuracy of the reconstruction for the blocks including 
more nonlinear patterns such as curves. VVC intra modes 
can predict pixels only in a single direction, but the pro-
posed method reconstructs the target block by referring to 
the pixels with high correlation for each pixel. 

Table 3. Reconstruction MSEs by target block size. 
m 16 32 64 

MSE 254.33 391.96 541.13 

Table 2. Reconstruction MSEs by the number of spatial features.
f 8 16 24 32 

MSE 274.79 270.32 254.33 254.18 

Table 4. Comparison of MSEs for frames of actual video. 

Video 
MSE Selection rate of  

proposed method (%) Reduction rate (%) 
VVC Proposed method 

News 528.71 431.91 31.3 18.3 
Hall 382.70 315.20 27.2 17.6 

Container 426.07 360.33 31.3 15.4 
Flower 1061.21 946.10 34.3 10.8 

Bus 610.77 508.06 41.4 16.8 
Stefan 810.48 691.73 44.4 14.7 
Paris 710.86 639.27 29.2 10.1 

Fig. 10. Actual videos for simulation. 
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Ⅴ. CONCLUSION 

In this paper, we proposed the block reconstruction 
method by predicting the spatial features of the target block. 
The spatial features were extracted from the pixels of the 
top and left adjacent blocks through the CNN layers. The 
spatial correlations between the target block and the refer-
ence pixels were predicted by attention mechanism. The 
pixels of the target block were reconstructed through the 
CNN layers. In the simulation results, the average accuracy 
of the reconstruction was 14.8% for the actual videos. In the 
future, we will continue to conduct research on applying the 
proposed method to intra-picture prediction for video cod-
ing. The proposed network can be applied to video coding, 
inpainting, and super-resolution.  
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