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I. INTRODUCTION  

As Taekwondo became widely accepted by the public, 
the number of people learning Taekwondo increased rapidly. 
However, traditional face-to-face teaching has yet to meet 
people's needs [1-2]. Many problems have been exposed in 
the actual teaching, including: (i) Due to the enrollment ex-
pansion of colleges and universities, the increase of stu-
dents taking Taekwondo courses, and the shortage of 
Taekwondo teachers, many colleges implement class teach-
ing in the teaching arrangement, which directly leads to the 
difficulty in ensuring the learning quality of students. (ii) 
Traditional Taekwondo teaching relies heavily on coaches. 
Students need to complete the training to get effective 
movement instruction. Traditional Taekwondo teaching 
mode is challenging to cope with the increasing educational 
demand. The core of Taekwondo teaching and competition 
is the practical evaluation of movement completion quality 
[3]. In the Taekwondo Poomsae competition, movement 
completion quality significantly impacts the final score [4]. 
As an essential basic skill, Taekwondo Poomsae plays a 

pivotal role in Taekwondo learning [5]. The quality of 
Poomsae learning is crucial to improve the overall strength 
of Taekwondo. Therefore, we use Taekwondo Poomsae as 
a representative movement for theoretical research to pro-
vide a feasible reference for other movements in Taek-
wondo. 

Currently, Taekwondo teaches fundamental skills for ac-
tual combat and Taekwondo Poomsae. Poomsae in different 
chapters have unique movement characteristics, and the 
quality of movements is closely related to the student's 
physical coordination, balance, strength, speed, and rhythm 
[6]. Therefore, Poomsae is the core content of Taekwondo 
teaching and one of the primary evaluation items in various 
competitions. The judgment of the Poomsae action's quality 
for a long time depends on teachers' manual evaluation. 
The manual evaluation criteria mainly refer to three indica-
tors: accuracy, proficiency, and expressiveness [7]. The ac-
curacy score includes the accuracy of fundamental move-
ments as well as the accuracy of each Poomsae movement. 
Proficiency is scored on a range of body movements, bal-
ance, speed, and power of movement—expressiveness 
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rated for rigidity, slowness, change of pace, and the stu-
dent's momentum. However, manual participation will be 
interfered with by many subjective factors, which are 
mainly reflected in (i) the movement rhythm changes 
quickly, the differences between the movements are slight, 
and the duration of completing a set of continuous move-
ments are long, which all affect the accurate judgment of 
teachers. (ii) Quality evaluation is easily affected by teach-
ers' knowledge and personal preferences. This utterly man-
ual judgment brings many subjective factors to the final 
score. (iii) In Taekwondo teaching, only the teachers usu-
ally observe from a fixed angle, so the evaluation results are 
not comprehensive and accurate enough. (iv) Movement 
strength is one of the vital evaluation factors of movement 
quality [8]. However, movement strength cannot be meas-
ured by an accurate quantitative index. It can only be esti-
mated by manual observation, which is not conducive to 
forming objective and accurate completion quality scores. 
It is not easy to solve the above difficulties and challenges 
effectively by combining traditional information collection 
with manual analysis. For example, although video record-
ing and slow-motion analysis can be performed, it still be-
longs to the category of manual evaluation, which does not 
fundamentally solve the problem. Therefore, it is necessary 
to introduce the latest Artificial Intelligence (AI) to find 
new solutions to the above problems. 

Recently, AI triggered by deep learning has swept many 
fields and achieved fruitful results [9-11]. In machine vision, 
natural language processing, and other fields, deep learning 
has demonstrated its advantages in processing big data and 
heterogeneous data from multiple sources. The application 
of deep learning technology in Taekwondo teaching, espe-
cially neural network, which uses a neural network to build 
innovative evaluation algorithms of Taekwondo movement 
quality, provides theoretical support for taekwondo teach-
ing, can make up for the shortcomings in the existing 
Taekwondo teaching, effectively improve the supply level 
of the existing Taekwondo teaching, and promote students 
to reduce their dependence on teachers and sites. Improving 
the quality of Taekwondo teaching and students' learning 
efficiency is a solid support to promote the development of 
Taekwondo's innovative teaching, which has clear theoreti-
cal and practical value. Therefore, from the perspective of 
improving the automation and intelligence level of 
Taekwondo education, this study tries to integrate the pro-
fessional knowledge of Taekwondo and introduce a neural 
network to promote the development of Taekwondo's inno-
vative education. 

The evaluation of Taekwondo Poomsae quality is to in-
tegrate the human body posture recognition based on a neu-
ral network with Taekwondo quality and perform the action  
feature extraction and scoring modeling. Traditional human 
motion recognition mainly adopts equipment that can be 

used for video recording or photography, collects human 
video and photos, and uses the method of image processing 
for motion recognition [12-14]. With the development of 
technology, human action recognition is no longer limited 
to computer vision but has been extended to other fields. 
For example, they are using inertial sensors for recognition. 
By being equipped with sensors or cameras and other 
equipment, the movement data of students in Taekwondo 
Poomsae will be collected, including action, speed, and 
other information. Then, the collected Internet of Things 
(IoT) data is uploaded to the cloud for processing. This 
study uses cloud IoT model. Cloud IoT, or Cloud-based In-
ternet of Things, is a model for delivering IoT services that 
utilizes the cloud for data storage, processing, and analysis. 
Instead of relying solely on local devices for data manage-
ment and analytics, Cloud IoT enables devices to communi-
cate with cloud servers, which can then process and analyze 
the data in real-time. In this model, IoT devices are con-
nected to the internet and send data to cloud-based servers, 
where it is processed and analyzed using machine learning 
algorithms and other advanced analytics tools. The pro-
cessed data can then be used to generate insights, trigger 
actions, or feed back into the device to optimize its perfor-
mance. Cloud IoT offers several benefits compared to tra-
ditional IoT models, including scalability, flexibility, and 
cost-effectiveness, as well as the ability to support complex 
data processing requirements and integrate with other 
cloud-based services. The cloud uses big data technology to 
analyze and process data and extract the feature vector of 
Taekwondo Poomsae movements [15]. The neural network 
is used to train and recognize feature vectors and is con-
structed by deep learning technology to train and recognize 
Taekwondo Poomsae movements. The identified Taek-
wondo Poomsae movements are compared with the stand-
ard movements, and the performance of the movements is 
calculated. Through the above process, the real-time evalu-
ation and feedback of students' Taekwondo Poomsae move-
ments can be realized, and the teaching effect and students' 
self-correction ability can be improved. This approach has 
several benefits over traditional Taekwondo instruction. 
First, it provides real-time feedback to the student, which 
can help them correct mistakes and improve their perfor-
mance faster. Second, the system can adapt to each student's 
individual needs and learning styles, providing a personal-
ized learning experience. Third, using cloud computing and 
neural networks can provide insights into the performance 
of large groups of students, which can be used to improve 
the overall instruction and training programs. 

Accordingly, the main contributions of this paper are or- 
ganized as follows. (i) A multi-sensor data fusion method 
is proposed to collect Taekwondo Poomsae action. (ii) A 
Taekwondo Poomsae expertise integrated multi-view fea-
ture extraction method is proposed. (iii) CNN (convolu- 
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tional neural network)-Mogrifier LSTM (long short-term 
memory) is proposed to train the generated Taekwondo 
Poomsae action scoring model. 

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 presents a multi-
sensor data fusion method. Section 4 studies the CNN-
Mogrifier LSTM-based Taekwondo Poomsae action scor-
ing model. Experimental results are reported in Section 5. 
Section 6 gives the conclusion of this paper. 

 

Ⅱ. RELATED WORK 

2.1. Application of AI in Sports 
Because of advancements in information and communi-

cation technologies, AI is increasingly used in sports [16-
20]. There is a need to improve the precision of deep learn-
ing for use in diagnosing sports injuries. New possibilities 
for the growth of physical education arise when pattern 
recognition is combined with virtual reality technology, 
augmented reality technology, and mixed reality technology. 
Wearable devices with pattern recognition capabilities can 
track student progress in physical education [21-22]. Smart 
wearable technologies combined with VR allow for a more 
realistic and less risky learning environment in activities 
that need specific conditions, such as ice and snow sports 
and golf. Wearable devices and computer vision are the 
backbones of augmented reality, allowing teachers to cap-
ture real-time multi-view image data, collect students' 
three-dimensional action data, and provide instant feedback. 
To provide an immersive physical education experience, 
mixed reality uses wearable devices to interact with indi-
viduals and the environment. Wearable devices may be 
paired with virtual personal assistants to achieve human-
computer interaction in PE through emotional computing 
and cloud computing and to develop personalized PE lesson 
plans. Furthermore, machine learning is often used in com-
petitive sports, and its impact on PE may be seen mainly in 
two areas [23-25]. (i) Deep learning can be used to identify 
different types of exercise. Examples of artificial neural 
networks in this regard include assessing metabolic equiv-
alents and identifying different activity categories (such as 
light activity, sports, strenuous exercise, and housework). 
Real-time muscle monitoring and feedback, fatigue predic-
tion, and injury prevention are all possible thanks to com-
putational modeling. (ii) Predicting future results is possi-
ble with deep learning. It offers a statistical base for hierar-
chical physical education by mining training and competi-
tion history to predict competition outcomes. 

 
2.2. Human Action Recognition 

Human action recognition through wearable sensors 

mainly refers to the use of wearable sensors on the human 
body to collect data generated during the movement of the 
limbs and to analyze the sensor data to identify the current 
movement pattern of the wearer, such as climbing stairs, 
walking, and running [26]. Human action recognition usu-
ally includes four stages: data acquisition and preprocessing, 
feature extraction, classifier training, and recognition [27]. 
Typically, human action recognition methods are mainly 
machine- and deep learning-based methods. Machine learn-
ing-based methods must manually select relevant features 
from sensor data, such as mean, standard deviation, in-
tragroup correlation coefficient, maximum value, minimum 
value, etc. Then use, manually selected features to train 
classifiers, such as support vector machines (SVM), linear 
discriminant analysis, random forests, etc. The recognition 
performance of the machine learning-based method de-
pends mainly on the correlation degree of the features [28]. 
The recognition effect will be significantly reduced if the 
features cannot reflect the differences between the motion 
patterns. With the continuous development of deep learning 
technology, deep learning-based methods have gradually 
become the mainstream research direction of human action 
recognition [29]. Compared with traditional machine learn-
ing, deep learning can automatically extract features 
through the hidden layer, improving recognition accuracy, 
speed, and precision. Ronao and Cho [30] proposed using a 
convolutional neural network (CNN) to recognize patterns 
such as walking and going up and down stairs, and the ef-
fect is better than SVM. Wang and Liu [31] used memory 
characteristics and the storage function of long short-term 
memory to identify motion patterns. Ordonez and Roggen 
[32] proposed a hybrid model combining CNN and LSTM, 
using the output of CNN as the input of LSTM. 

  

Ⅲ. MULTI-SENSOR DATA FUSION 

3.1. Data Collection 
To collect the action data of Taekwondo Poomsae, it is 

necessary to establish the spatial coordinate system of stu-
dents' actions. Due to the complexity of Taekwondo 
Poomsae, the actions of different body parts are very differ-
ent. For example, the wrist, knee, shoulder, and other parts 
are complicated and changeable in Taekwondo Poomsae 
training, and the randomness of actions is high. The body 
sensor positions and data flow architecture are shown in Fig. 1. 

As shown in the body sensor and data flow architecture 
(Fig. 1), sensors are positioned on the wrists, elbows, knees, 
and ankles. The motion data from these sensors flows into 
a cloud database for storage and analysis. 

In this study, a triaxial digital acceleration sensor is se-
lected to collect the gravity acceleration information of 
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Taekwondo Poomsae students, and a MEMS triaxial angu-
lar velocity sensor (gyroscope) is selected to collect the hu-
man body attitude angle information [33-34]. The angle 
collected by the sensor can be corrected in real-time to over-
come the deviation of the single sensor in pose angle meas-
urement through the fusion of the acceleration sensor and 
the gyroscope data. 

When students do Taekwondo Poomsae action, 𝐺⃗ is set 
as the vector measured by the acceleration sensor, whose 
acceleration values are 𝐺௑ሬሬሬሬ⃗ , 𝐺௒ሬሬሬሬ⃗  and 𝐺௓ሬሬሬሬ⃗  in the direction of 
the three axes 𝑋, 𝑌, and 𝑍, respectively. The measured ac-
celeration values need to be converted into angular values. 

When the acceleration sensor is at rest, we have 
  𝐺ଶሬሬሬሬ⃗ = 𝐺௑ଶሬሬሬሬ⃗ + 𝐺௒ଶሬሬሬሬ⃗ + 𝐺௓ଶሬሬሬሬ⃗ . (1)
  

Normalizing vector 𝐺⃗ as follows. 
  

⎩⎪⎨
⎪⎧𝑅௑ሬሬሬሬሬ⃗ = ீ೉ሬሬሬሬሬ⃗|ீ|ሬሬሬሬሬ⃗𝑅௒ሬሬሬሬ⃗ = ீೊሬሬሬሬሬ⃗|ீ|ሬሬሬሬሬ⃗𝑅௓ሬሬሬሬ⃗ = ீೋሬሬሬሬሬ⃗|ீ|ሬሬሬሬሬ⃗

 . (2)

  

The vector value 𝑅௔௖௖ሬሬሬሬሬሬሬሬ⃗   in the direction of normalized 
gravity at the current time is defined as follows. 

  𝑅௔௖௖ሬሬሬሬሬሬሬሬ⃗ = ට𝑅௑ଶሬሬሬሬሬሬሬ⃗ + 𝑅௒ଶሬሬሬሬሬሬሬ⃗ + 𝑅௓ଶሬሬሬሬሬሬሬ⃗ = 1. (3)
  

The angle 𝜃௔௖௖_௫, 𝜃௔௖௖_௬, and 𝜃௔௖௖_௭ of the gravity vec-
tor in the direction of the three axes can be calculated from 
the normalized vector value, and the angle can be calculated 
as follows. 

  

⎩⎪⎪
⎨⎪
⎪⎧𝜃௔௖௖_௫ = arcsin หோೊሬሬሬሬሬ⃗ หටோೊమሬሬሬሬሬሬሬሬ⃗ ାோೋమሬሬሬሬሬሬሬሬ⃗𝜃௔௖௖_௬ = arcsin หோ೉ሬሬሬሬሬሬ⃗ หටோ೉మሬሬሬሬሬሬሬሬ⃗ ାோೋమሬሬሬሬሬሬሬሬ⃗𝜃௔௖௖_௭ = arcsin หோೊሬሬሬሬሬ⃗ หටோ೉మሬሬሬሬሬሬሬሬ⃗ ାோೊమሬሬሬሬሬሬሬሬ⃗

. (4)

  

Suppose that the angular velocity measured by the angu-
lar velocity sensor around axes 𝑋, 𝑌, and 𝑍 are 𝜔௫, 𝜔௬ 

and 𝜔௭  respectively. It is also necessary to convert the 
measured angular velocity into the corresponding rotation 
angle. According to the current rotation angular velocity 
collected and the system's sampling period, the gyroscope's 
rotation angle around the three axes can be calculated as 
follows. 

  

൞𝜃௚௬_௫ = ׬ 𝜔௫ d𝑡𝜃௚௬_௬ = ׬ 𝜔௬ d𝑡𝜃௚௬_௭ = ׬ 𝜔௭ d𝑡, (5)

  

where 𝜃௚௬_௫ , 𝜃௚௬_௬ , and 𝜃௚௬_௭  represent the rotation an-
gles of the corresponding 𝑋, 𝑌, and 𝑍 coordinate axes af-
ter calculation, and d𝑡 represents the sampling period of 
the gyroscope data. 

The Kalman filter fuses the information collected by the 
acceleration sensor and gyroscope [35]. The measured 
value of the acceleration sensor is taken as the predicted 
value, the measured value of the gyroscope is taken as the 
observed value, and the observed value modifies the pre-
dicted value of the acceleration sensor as the output value. 
Gyroscope drift error 𝑏 is estimated by acceleration sensor 
as state vector to obtain the state equation and observation 
equation. 

  ቐቂ𝜃′𝑏′ቃ = ቀ0 −10 0 ቁ ቂ𝜃𝑏ቃ + ቂ10ቃ 𝜔௚௬ + ቂ𝜔௚0 ቃ𝜃௔௖௖ = ሾ1 0ሿ ቂ𝜔ഥ𝑏 ቃ + 𝜔௔ . (6)

  

In equation (6), 𝜔௚௬ represents the output angular ve-
locity of the gyroscope with fixed deviation, 𝜃௔௖௖ repre-
sents the angular value of the acceleration sensor obtained 
after processing, 𝜔௚  and 𝜔௔  are the measured noise of 
the gyroscope and the acceleration sensor respectively. For 
the convenience of calculation, they are independent of 
each other. Assuming that they are white noise and meet the 
normal distribution. Let the measurement noise be 𝜔(𝑘) 
and the sampling period be 𝑇௦. The equation of state and 
measurement are defined as follows. 

  ൝𝑋(𝑘) = ቀ1 𝑇௦0 1 ቁ 𝑋(𝑘 − 1) + ቂ𝑇௦0 ቃ 𝜔௚௬(𝑘 − 1) + ൤𝜔௚(𝑘)𝑇௦0 ൨𝑉௜ = ሾ1 0ሿ𝑋(𝑘) + 𝜔௔(𝑘) . (7)

  . (8)
  

In equation (8), 𝐾𝑔(𝑘)  represents the Kalman incre-
ment at time 𝑘, 𝑃(𝑘|𝑘 − 1) represents the covariance of 
the system since time 𝑘 − 1, 𝑯 represents the output ma-
trix of the measurement, 𝑯் represents its transpose ma-
trix, and 𝑅(𝑘) represents the covariance of the measure-
ment noise. The pose angle of fusion is defined as follows. 

  𝜃(𝑘) = 𝜃௚௬(𝑘) + 𝐾𝑔(𝑘) ቀ𝜃௚௬(𝑘) − 𝜃௔௖௖(𝑘)ቁ. (9)
  

  

Fig. 1. Body sensor positions and data flow architecture. 
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In equation (9), 𝜃௚௬(𝑘)  and 𝜃௔௖௖(𝑘)  are the pose an-
gles output by gyroscope and acceleration sensor at time 𝑘 
respectively, and 𝜃(𝑘) is the output value of pose angle at 
time 𝑘 after fusion, which is also the optimal output value 
of Kalman filter at this time. The covariance of the system 
state at time 𝑘 is defined as follows. 

  𝑃(𝑘|𝑘) = (1 − 𝐾𝑔(𝑘)𝐻)𝑃(𝑘|𝑘 − 1). (10)
  

Equations (6) to (10) are the calculation of Kalman fil-
tering. Equations (8) and (10) are used to ensure the recur-
sion and persistence of the filtering. When the system re-
ceives the angular velocity output of the gyroscope at time 𝑘 + 1, it returns to equation (5). At this time, the system 
enters the filtering operation at time 𝑘 + 1. 

The sensor data details are shown in Table 1. 
After fusion of the collected multi-sensor data, the error 

of angle measurement using acceleration sensor alone is 
overcome, and the Taekwondo Poomsae action data col-
lected by students is closer to the true value. 

  

3.2. Poomsae Integrated Feature Extraction 
In studying Taekwondo Poomsae movements, it is nec-

essary to extract such characteristics as the speed, strength, 
and key angle of limbs and torso. Combined with the teach-
er's professional knowledge, this method extracts features 
such as speed, strength, and angle after collecting human 
action data. Since a complete set of Poomsae actions in-
cludes two types: "action in movement" and "action at rest", 
the characteristics can be calculated separately. The first ac-
tion in Poomsae Chapter One is illustrated here as an exam-
ple to facilitate understanding. "Action in movement" is in 
change, with speed and strength as important reference in-
dicators. There is a brief pause in "action at rest", which 
uses the angle of the body as an essential indicator. 

The "action in movement" feature focuses on the speed 
and force of the body during movement. In the experiment, 
the acceleration of the same joint coordinate point is used 
to approximately replace the force. In Poomsae Chapter 
One, the two arms have the most extensive range of motion. 
We use multiple cameras to obtain multi-view videos of stu-
dents' Taekwondo Poomsae actions. Therefore, the velocity 
and acceleration of the following coordinate points should 
be calculated mainly: left elbow, left wrist, right elbow, and 
right wrist. 

Taking the left wrist as an example, the coordinates of  

𝑡 − 1th frame is wrist(𝑋௧ିଵ, 𝑌௧ିଵ), and the coordinate of 
the 𝑡th Frame is wrist(𝑋௧, 𝑌௧). By calculating the Euclid-
ean distance between the two coordinate points, the corre-
sponding action distance 𝑠 = ඥ(𝑥௧ − 𝑥௧ିଵ)ଶ + (𝑦௧ − 𝑦௧ିଵ)ଶ 
can be obtained. The corresponding action time can be ob-
tained by calculating the time difference between the two 
frames. For a camera with 30 frames per second, the time 
between frames is 1,000 ms / 30=33.33 ms. From this, the 
speed and acceleration of the coordinate point between two 
frames can be obtained. That is, the speed between each 
frame is set as 𝑣 = 𝑠/𝑡, and the acceleration between each 
frame is set as 𝑎 = 𝑣/𝑡. 

The "action at rest" feature focuses on the direction and 
angle of the body movement at the pause. Since the stand-
ard of "action at rest" should be judged according to the an-
gle value of each limb and torso, several key angles are used 
as features: double elbow angle, arms with vertical angle, 
legs with vertical angle, and knees angle. 

Taking the angle of the left elbow as an example. Set the 
coordinates of left elbow as 𝐸(Xୣ୪ୠ୭୵, Yୣ୪ୠ୭୵), left wrist as 𝑊(X୵୰୧ୱ୲, Y୵୰୧ୱ୲) and left shoulder as 𝑆(Xୱ୦୭୳୪ୢୣ୰, Yୱ୦୭୳୪ୢୣ୰). 
Vector 𝐸𝑊 can be extracted from the joint between elbow 
and wrist, and vector 𝐸𝑆 can be extracted from the joint 
between elbow and shoulder. The elbow angle is calculated 
as follows. 

  cos(𝛼) = cos(𝐸𝑊, 𝐸𝑆) = ாௐ∙ாௌ|ாௐ|×|ாௌ|. (11)
  

According to Taekwondo training requirements, these 
"action at rest" have a typical angle value. Thus the thresh-
old value can be set beforehand, and the difference between 
the action and the standard action can be obtained by com-
paring the action angle value and threshold value made by 
students in the video. For example, if the left arm needs to 
be at an angle of 45 degrees in the vertical direction and the 
angle of action of the student is between 42 and 48 degrees, 
then the movement is considered to be up to standard, and 
the feature is set to 1. If the angle of movement of students' 
limbs is between 39 and 42 degrees or between 48 and 50 
degrees, the angle deviation of movement is large, which 
can be adjusted appropriately. The feature value is 0.6. If 
the angle value of students' actual actions deviates too much 
from the threshold, they directly set the dimension feature 
value to 0, indicating that the feature value is completely 
substandard. 

Table 1. Summary of sensor data collected. 

Sensor type Body location Data captured Frequency 

Accelerometer Wrists, elbows Acceleration along X/Y/Z axes 50 Hz 

Gyroscope Knees, ankles Angular velocity around X/Y/Z axes 100 Hz 
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Ⅳ. CNN-MOGRIFIER LSTM-BASED 
TAE-KWONDO POOMSAE ACTION 

SCORING MODEL 

A neural network is a computing model inspired by the 
human brain's network of biological neurons, referring to 
deep neural networks that have multiple layers and are ca-
pable of learning complex patterns from data through a 
training process. Cloud computing provides access to stor-
age, computing resources, databases, and software applica-
tions over the internet, allowing for flexible scaling and ef-
ficient analytics. The IoT refers to the concept of connect-
ing many physical devices and exchanging data over the in-
ternet. In this study, motion sensors attached to the body 
send data to cloud servers to be processed by deep neural 
networks. Specifically, CNN, which has convolutional lay-
ers to extract spatial patterns from images or sensor data, is 
utilized. The sequential nature of the motion data also lends 
itself to analysis using an LSTM network, a type of recur-
rent neural network well-suited for modeling time series 
data by remembering long-term dependencies. 

With this high-level background establishing some key 
building blocks, we dive deeper into the technical details 
around the custom multi-sensor fusion methodology and 
tailored CNN-LSTM architecture developed to assess 
Taekwondo movements. 

However, mining the dependence link before and after 
the action data is challenging, even if CNN can retrieve the 
locally relevant aspects of the data generated by sensors. 
Taekwondo Poomsae is composed of continuous actions, 
with a robust sequential relationship between the actions 
before and after. Thus, LSTM network in deep learning 
may be used to explore the consistency amongst students’ 
activities, particularly alterations in speed, strength, and 
other characteristics. Poomsae action evaluation may bene-
fit greatly from LSTM's gate mechanism, which efficiently 
addresses issues plaguing recurrent neural networks [36-
37]. 

In this case, the structural properties of LSTM are the 
primary determinants of LSTM's use in mining Poomsae 
action coherence. (i) The new time step enters the LSTM 
neuron through the input gate, and the LSTM neuron com-
putes the short-term memory output of the previous time 
step to permanently store the most important information 
from the current time step. When punching, for instance, 
there is a far greater variation in speed and strength at the 
wrists than there is at the shoulders. In the input door, the 
shoulder feature can be weakened, but the importance of the 
wrist feature can be highlighted more. (ii) The forget gate 
allows for selective forgetting of short-term memory gener-
ated in the prior time step. The most important pieces of 
information are the ones stored in long-term memory. When 

the student punches, the points on the right side of his/her 
body will move more quickly and have a greater impact on 
the model's overall evaluation. Consequently, the whole left 
arm is weakened. Short-term memory (i.e., force, speed, 
angle, and other information at the latest moment) is output 
through the output gate while long-term memory (i.e., the 
general posture information of Poomsae action) is main-
tained, thereby reducing the impact of noise and features 
with little contribution. 

The gates in LSTM include the input gate 𝑖௧, the forget 
gate 𝑓௧, and the output gate 𝑜௧. 𝑥௧ is the input to the cur-
rent node, ℎ௧ିଵ  is the output of the previous node, and 𝑐௧ିଵ  is the state of the previous node. LSTM selectively 
memorizes the input 𝑥௧  and ℎ௧ିଵ  of the current node 
through the input gate 𝑖௧ , determines how much infor-
mation can be stored in the current node to generate a new 
state 𝑐௧, and then passes the forget gate 𝑓௧ to the previous 
node's state 𝑐௧ିଵ for selective forgetting. Only part of use-
ful information is retained, and finally 𝑐௧ is converted to 
the output ℎ௧ of the current node through the output gate 𝑜௧. The specific update process of LSTM is as follows. 

  𝑖௧ = 𝜎(𝑊௫௜𝑥௧ + 𝑊௛௜ℎ௧ିଵ + 𝑏௜). (12)
  𝑓௧ = 𝜎൫𝑊௫௙𝑥௧ + 𝑊௛௙ℎ௧ିଵ + 𝑏௙൯. (13)
  𝑜௧ = 𝜎(𝑊௫௢𝑥௧ + 𝑊௛௢ℎ௧ିଵ + 𝑏௢). (14)
  𝑐௧෥ = tanh(𝑊௫௖𝑥௧ + 𝑊௛௖ℎ௧ିଵ + 𝑏௖). (15)
  ℎ௧ = 𝑜௧ ∙ tanh(𝑐௧). (16)
  𝑐௧ = 𝑓௧ ∙ 𝑐௧ିଵ + 𝑖௧ ∙ 𝑐௧෥ . (17)
  

As can be seen from equation (17), 𝑐௧ of the output state 
of the current node is weighted by the state of the previous 
node and the internal information of the current node. As 
long as 𝑓௧ of the forget gate is not 0, LSTM can memorize 
the information of the previous node. 

By using the aforementioned gate mechanism, LSTM is 
able to automatically filter out noise and extract meaningful 
temporal differences across frames. In a hypothetical con-
flict between two students, one would move at a constant 
tempo while the other would alternate between sluggish and 
quick bursts of activity. LSTM can figure out how much of 
a difference there is in terms of velocity and intensity be-
tween the two actions. As a consequence, there is a wide 
range of evaluation outcomes. 

There is no direct connection between the input 𝑥௧ of 
the current node and the output ℎ௧ିଵ of the previous node 
before it is sent to the node. Melis et al. [38] believe that 𝑥௧ 
and ℎ௧ିଵ, which are independent of each other, would lose 
part of the temporal correlation of data, so they proposed 
Mogrifier LSTM based on LSTM. Mogrifier LSTM does 
not change the original structure of LSTM. Instead, 𝑥௧ and 
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ℎ௧ିଵ  are first fully interacted with each other in the 𝑅 -
round according to equations (18) and (19) to enhance the 
main features and weaken the secondary features in the time 
series. Then, the updated 𝑥௧ and ℎ௧ିଵ are sent to the cur-
rent node to improve the ability of the model to extract data 
time correlation. Fig. 2 is the schematic diagram of Mogri-
fier LSTM when 𝑅 = 5 . Where 𝑥ିଵ  is the input 𝑥௧  of 
the current node, ℎ଴  is the output ℎ௧ିଵ  of the previous 
node, and the hyperparameter 𝑟 is the number of rounds 𝑥௧ and ℎ௧ିଵ interact. When 𝑟 = 0, the Mogrifier LSTM 
degrades to LSTM. 𝑖 ∈ ሾ1, ⋯ , 𝑟ሿ , when 𝑖  is odd, 𝑥௧  is 
updated; When 𝑖  is even, ℎ௧ିଵ  is updated, 𝑄௜  and 𝑅௜ 
are the parameter matrix of the model. Reference [38] 
proves that in the text tasks, the performance of Mogrifier 
LSTM is obviously better than that of LSTM through ex-
periments. 

  𝑥௜ = 2𝜎൫𝑄௜ℎ௧ିଵ௜ିଵ൯𝑥௜ିଶ, for odd 𝑖 ∈ ሾ1, ⋯ , 𝑟ሿ. (18)
  ℎ௧ିଵ௜ = 2𝜎൫𝑅௜𝑥௜ିଵ൯ℎ௧ିଵ௜ିଶ, for odd 𝑖 ∈ ሾ1, ⋯ , 𝑟ሿ. (19)
  

Therefore, our approach employs Mogrifier LSTM to ex-
tract deep temporal characteristics of Poomsae data to gen-
erate an objective score, which relies on obtaining human 
bone nodes and extracting features. In particular, a model 
capable of efficiently extracting sequential aspects of stu-
dents' activities may be generated by training Mogrifier 
LSTM. The time step of each sample is the information that 
makes up the Mogrifier LSTM layer's data. Its advantage 
lies in that the speed, strength, and angle feature changes in 
the time series can be extracted deeper. To mine more infor-
mation from sensor data and improve recognition accuracy, 
this study uses Mogrifier LSTM for Taekwondo Poomsae 
action recognition. It proposes a CNN-Mogrifier LSTM 
recognition algorithm combined with CNN. The structure 
is shown in Fig. 3. 

CNN-Mogrifier LSTM first uses a sliding window to di-
vide the data collected by each sensor and filters and nor-
malizes the original data in the window. Then, the local spa-
tial features of the data are extracted through the two con-
volutional layers, and the features extracted from the con-
volutional layers are used as the input of the Mogrifier 
LSTM layer. By fully interacting with 𝑥௧  and ℎ௧ିଵ , the 

dependence relationship between local space features is 
fully explored. Finally, the fully connected layer and Soft-
max function are used to identify the action mode of the 
current data. To include the information needed to recog-
nize the action pattern, the window length needs to be at 
least 200 ms [39]. 

According to the output results of CNN-Mogrifier LSTM, 
this study proposes a new scoring metric. The last layer of 
the network is the fully connected layer that uses Softmax 
as the activation function. This activation function is often 
used in multi-classification to map the output of multiple 
neurons to the interval (0,1) and ensure that the sum is one. 
Suppose there is a vector 𝑉, 𝑉௜ represents the 𝑖th element 
in 𝑉, then the Softmax of the element is calculated as fol-
lows. 

  𝑆௜ = ௘೔∑ ௘ೕ಴ೕసభ , (20)

  

where 𝐶 is the number of elements in 𝑉. The value calcu-
lated by Softmax can be regarded as the probability of the 
occurrence of a certain classification. In this study, equation 
(20) is used as the scoring metric to obtain a probability rel-
ative to the standard action between the standard action and 
non-standard action. This probability represents the com-
plete quality of this set of Poomsae actions and can be used 
as the final evaluation score. 

Different from the subjective qualitative evaluation usu-
ally used in the existing Taekwondo teaching, the scoring 
metric shown in equation (20) covers the expression of key 
features of actions and includes the evaluation of the overall 
gesture and local action coherence. Therefore, it can pro-
vide a more objective and accurate evaluation of the quality 
of action completion. 

  

Fig. 2. Mogrifier LSTM structure. 

  

Fig. 3. CNN-Mogrifier LSTM structure. 
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Ⅴ. EXPERIMENT AND RESULTS ANALYSIS 

5.1. Effect Test of Taekwondo Poomsae Action Smart 
Evaluation 

The test data of the effect test of Taekwondo Poomsae 
action innovative evaluation was completed by students 
from the physical education college of Jilin Sports Univer-
sity. Students make four sets of Taekwondo Poomsae ac-
tions with different grades for testing. The quality of the 
completed Taekwondo Poomsae actions is standard, sub-
standard, non-standard, and completely non-standard. Pro-
fessional teachers provide the judgment of these four grades. 
Since the video cannot be displayed in the paper, here we 
choose three kinds of "action at rest" for effect verification, 
as shown in Fig. 4. Among them, action videos labeled as 
"standard" to "completely non-standard" are collected from 
the four columns from left to right. It should be noted that 
the student's actions in the second column are not much dif- 
ferent from those in the first column. Even though the pos- 

tures of some actions are more standard (such as subfigure 
(10)), the strength of the student's actions is insufficient. 
They do not exert force according to the training require-
ments, so the teachers consider them "sub-standard". It can 
be seen that in subfigures (1) to (4), the angle between the 
four students' left arm and the vertical direction is different, 
which is consistent with the quality evaluation grade the 
teacher gave. There are similar differences in the angles of 
the elbow and shoulder and vertical direction shown in sub-
figures (5) to (10), and the angles of legs and vertical direc-
tion and knees shown in subfigures (9) to (11). This shows 
that the proposed method can accurately recognize the dif-
ferent actions of Taekwondo Poomsae. Moreover, there are 
apparent differences in the speed and strength of "action in 
movement". 

To verify the effectiveness of the proposed method and 
each model, we constructed three comparison methods, and 
the results are shown in Table 2. To the best of our 
knowledge, there is no work using machine learning meth- 

 
  

Fig. 4. Comparison of Taekwondo Poomsae action recognition effects of four groups of students with different quality levels under the 
frontal perspective. 
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ods to identify the quality of Taekwondo Poomsae actions. 
Therefore, it is impossible to compare existing methods, 
and we have to compare and verify by replacing or omitting 
part of the algorithm. 

Method 1: To verify the effectiveness of the "Taekwondo 
Poomsae knowledge integrated feature extraction method", 
feature extraction is omitted. The vector coordinates of the 
14 joint points of the human body in each frame are directly 
used as features and input into CNN-Mogrifier LSTM for 
training and scoring. 

Method 2: To verify the accuracy of the "LSTM scoring 
model" for deep temporal feature mining, the final scoring 
model of the proposed method is replaced by BP neural net-
work. The BP network uses three hidden layers, the output 
layer is two neurons, and the Softmax activation function is 
used for output. 

Method 3: To verify the influence of the sample data col-
lected under multi-view shooting on the final scoring re-
sults, a single camera is used to shoot from the front of the 
student in the video preprocessing and LSTM training steps. 
That is, the sample is collected from a single perspective. 
The rest of the various steps are the same as the method 
proposed in this study. 

It can be seen from Table 2 that the evaluation scores 
of method 1 are too concentrated and the discrimination is 
minimal, and there are error scores. This is due to the direct 
use of coordinate information as a feature vector. The fea-
tures need to be more prominent, LSTM training takes a 
long time, and the loss function decreases slowly. However, 
CNN-Mogrifier LSTM takes less time to train, the loss 
function converges faster, and the final result is more rea-
sonable. In method 2, the scores go to two extremes, and the 
separation between "standard" and "completely non-stand-
ard" is too large, resulting in an incomplete representation 
of the intermediate scores. The BP neural network is less 
sensitive to time series features than the LSTM network. 
Therefore, it is difficult to distinguish all test data effec-
tively, and the model is not robust enough. The scores 
of method 3 are too concentrated in the middle and lower 
reaches, and the discrimination needs to be more prominent. 
This is because the feature extraction of single-view videos 

needs to be more apparent to extract the action features 
thoroughly, and thus cannot give an accurate score. In con-
trast, only the results of the proposed method match the 
evaluation given by the teacher. Simultaneously, the dis-
crimination of the scores is moderate, indicating that the 
proposed method can evaluate the quality of Taekwondo 
Poomsae actions. 

To quantitatively assess how the model output scores 
correlate to the subjective teacher evaluations of the 
Taekwondo Poomsae performance, threshold ranges were 
established as follows: 

• Score ≥0.9 = Qualitative rating of "Excellent" 
• Score 0.8−0.89 = Qualitative rating of "Good" 
• Score 0.7−0.79 = Qualitative rating of "Fair" 
• Score 0.6−0.69 = Qualitative rating of "Poor" 
• Score <0.6 = Qualitative rating of "Bad" 
These threshold score ranges were determined based on 

consultation with domain experts and analysis of sample 
score distributions. For statistical validation, the F1-score 
and confusion matrices were examined. The high F1-score 
on the test dataset was achieved, providing evidence for 
strong agreement between the model rating and teacher rat-
ing for each performance. 

The confusion matrices showed reliable score discrimi-
nation, with a high true positive rate for each qualitative rat-
ing bracket. Misclassifications predominantly occurred be-
tween adjacent rating categories, indicating that the output 
scores effectively capture differences in the Poomsae exe-
cution. 

By establishing firm score rating thresholds aligned to 
subjective evaluations and applying standard statistical 
measures (F1 and confusion matrices) to quantify agree-
ment, the correlation between the computed scores and hu-
man judgments can be concretely validated, increasing con-
fidence in the model's ability to evaluate performance qual-
ity objectively. 

Precision, recall, F1 metrics, and confusion matrices 
were leveraged to quantitatively evaluate model rating 
agreement compared to teacher ratings, using a test dataset 
encompassing 50 performances rated on a scale of 1 to 5 by 
both the model and teachers. 

Fig. 5 presents the strong overall accuracy metrics 
achieved. Precision reflects how often teacher ratings 
match when the model predicts each rating, while recall 
quantifies sensitivity in correctly assigning all cases of a 
certain rating. F1 score combines both precision and recall. 
Across all ratings, high scores demonstrate excellent quan-
titative agreement. 

The confusion matrices in Fig. 6 and Fig. 7 indicate over 
80% match rates along the diagonals and fewer than 15% 
mismatches between adjacent rating categories (1 vs. 2, 2 
vs. 3), which aligns well quantitatively. 

Table 2. Smart evaluation comparison. 

Test 
clip 

The 
proposed 

Method 
1 

Method 
2 

Method 
3 Manual label 

Clip 1 95 74 93 57 Standard 

Clip 2 88 77 89 54 Sub-standard 

Clip 3 66 69 35 46 Non-standard

Clip 4 47 68 22 50 Completely 
non-standard 
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The strong accuracy metrics and distribution alignment 

substantiate that the model evaluated Poomsae quantita-
tively on par with expert judgments, thereby demonstrating 
objective automated rating capabilities. 

5.2. Recognition Effect Experiment 
To verify the recognition effect of CNN-Mogrifier 

LSTM, this study selected ten taekwondo athletes for ex-
periments. The Poomsae actions of the testers are jumping 
front kick, knee strike, roundhouse kick, hammerfist strike, 
side kick, and knifehand neck strike. A total of 27,040 sam-
ples were collected by the sliding window method, among 
which 18,319 samples (about 70%) were selected as the 
training set, and the remaining samples (about 30%) were 
selected as the test set for experiments. The number of sam-
ples for each action pattern in the dataset is shown in Table 3. 

In this sutdy, four algorithms including LSTM, Mogrifier 
LSTM, CNN-LSTM and the proposed CNN-Mogrifier 
LSTM were used for experiments to evaluate the recogni-
tion accuracy. The number of interaction rounds 𝑟  be-
tween 𝑥௧ and ℎ௧ିଵ in Mogrifier LSTM needs to be deter-
mined by experiments. Fig. 8 shows the recognition accu-
racy of Mogrifier LSTM under different values of 𝑟. It can 
be found that the accuracy is the highest when 𝑟 = 5, so 5 
is selected for the number of interactions 𝑟 in Mogrifier 
LSTM and CNN-Mogrifier LSTM. Table 4 shows the 
recognition accuracy obtained by each algorithm. 

The analysis of Table 4 shows that after five rounds of 
interaction between 𝑥௧  and ℎ௧ିଵ , Mogrifier LSTM can 

Table 3. Poomsae action recognition dataset. 

Action Number of 
samples 

Training 
set 

Test 
set 

Jumping front kick 5,152 3,674 1,478 

Knee strike 4,722 3,629 1,093 

Roundhouse kick 4,243 2,913 1,330 

Hammerfist strike 3,785 2,571 1,214 

Side kick 4,762 3,347 1,415 

Knifehand neck strike 4,376 3,056 1,320 

 
  

Fig. 5. Accuracy metrics. 

 
  

Fig. 6. Model confusion matrix. 

 
  

Fig. 7. Teacher confusion matrix. 

 
  

Fig. 8. Mogrifier LSTM recognition accuracy with different 𝑟. 
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better mine the dependence of time series data, and the 
recognition accuracy is significantly better than LSTM. 
Compared with only using LSTM, CNN-LSTM first ex-
tracts a large number of local spatial features of data 
through CNN, which can provide more effective input data 
for LSTM and improve the accuracy of recognition. How-
ever, compared with CNN-LSTM, the proposed CNN-
Mogrifier LSTM makes full use of the advantages of Mog-
rifier LSTM and can mine the forward and backward de-
pendencies of local spatial features better than LSTM. Ex-
perimental results show that CNN-Mogrifier LSTM has 
achieved high recognition accuracy of Taekwondo 
Poomsae actions. 

  
Ⅵ. CONCLUSION 

This paper studies the cloud IoT-oriented neural net-
work-based Taekwondo teaching scheme. We use a tech-
nology-enabled approach to Taekwondo instruction that im-
plements the IoT, cloud computing, and neural networks to 
enhance students' learning experience. We use sensors to 
collect data on students during Taekwondo training, and 
this Poomsae action data is uploaded to the cloud through 
the IoTz. Then, taking Taekwondo Poomsae actions as the 
research object, the CNN-Mogrifier LSTM algorithm is 
proposed for the intelligent evaluation of Taekwondo 
Poomsae actions. Accurate and robust evaluation results are 
provided by extracting and modeling multi-view features of 
Poomsae action videos. The CNN-Mogrifier LSTM algo-
rithm can accurately identify the change characteristics of 
Poomsae actions. It can also effectively quantify the 
strength and coherence of actions, which can objectively 
score Poomsae actions. More importantly, it provides theo-
retical support for the quality evaluation of other actions in 
Taekwondo. The proposed method has good Taekwondo 
Poomsae action quality evaluation ability, as evidenced by 
the effect test of Taekwondo Poomsae action intelligent 
evaluation, which demonstrates that the results of the pro-
posed method follow the evaluation provided by the teach-
ers and the scores discrimination is moderate. The experi-
mental results also demonstrate that CNN-Mogrifier LSTM 
breaks away from the constraints of teachers and venues to 
realize automatic and intelligent Taekwondo teaching. It 
also provides comprehensive evaluation and improvement 

suggestions for the quality of action completion. 
While this work focused explicitly on Taekwondo for 

feasibility analysis, the sensor-based motion capture and 
neural network rating approach could be adapted to other 
sports. For gymnastics, the methodology would need to 
customize sensor positioning and motion features to capture 
the nuances required for events like balance beam, vault, 
and floor exercises. Sensors need full body coverage to cap-
ture intricate details. Features around balance, height, rota-
tion speed, and limb extension would be tailored specifi-
cally for judging proper technique and form. The model ar-
chitecture of coupled CNN and LSTM networks could re-
main to identify spatiotemporal patterns in execution. How-
ever, the output layer ratings would be defined differently 
than the 1−5 scale used for Taekwondo - instead, outputting 
deductions on a 10-point scale as commonly used in gym-
nastic scoring. The model training would require an expan-
sive dataset of sample gymnastics performances covering 
acceptable and faulty technique variations. While domain 
customization is needed, the core methodology of sensor-
based data fusion, automated feature extraction, and deep 
neural network pattern rating can extend across sports and 
events with performance subjectivity concerns. The system 
outputs could provide athletes and coaches with objective, 
real-time feedback identifying areas for technique improve-
ment personalized to the sport's unique scoring criteria. 

Although promising results, a range of limitations and 
risks open opportunities for extending this exploratory re-
search. While wearable motion sensors can achieve reason-
able accuracy, susceptibility to environmental noise and 
calibration errors may impact the fidelity and reliability of 
collected data. Moreover, assessments were limited in 
scope to three specific forms, so additional evaluation 
across a more comprehensive set of Taekwondo techniques 
would strengthen generalizability. With a constrained anno-
tated dataset available, overfitting risks may also arise dur-
ing neural network training that could require further cross-
validation and regularization strategies to mitigate. Signifi-
cant practical barriers to field deployment and coaching 
adoption also exist, including effectively managing device 
hardware, cost issues, privacy concerns, model interpreta-
bility challenges, and facilitating non-technical end-user in-
teraction. Since only near-term quantitative metrics were 
examined, follow-up work should also assess how longitu-
dinal exposure could reshape trainee practices, retention, 
and pedagogical outcomes. Through holistically addressing 
this range of analytical risks, resource demands, broad ap-
plicability gaps, algorithmic vulnerabilities, interface ob-
stacles, and influence time horizons, the field can pursue 
transformative translation of proposed methods beyond in-
itial feasibility into robust and accessible real-world solu-
tions. 

Table 4. Poomsae action recognition accuracy. 

LSTM Mogrifier 
LSTM CNN-LSTM CNN-Mogrifier 

LSTM 

93.66 
(7,353/7,851) 

97.16 
(7,628/7,851) 

97.43 
(7,649/7,851) 

98.09 
(7,701/7,851)
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