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I. INTRODUCTION  

Establishing reliable correspondence between two-view 
images is a fundamental task in numerous computer vision 
applications, including image registration, object tracking, 
feature matching, and 3D imaging. The Random Sample 
Consensus (RANSAC) algorithm is a robust approach de-
signed to handle data containing a high percentage of outli-
ers by iteratively identifying consensus sets that best fit the 
model [1]. RANSAC has become widely used for accu-
rately determining point correspondences under the epipo-
lar geometry constraint in two-view images, enabling the 
computation of the homography matrix and fundamental 
matrix from data contaminated by outliers. 

Over time, researchers have developed variations and 
improvements to the basic RANSAC algorithm to enhance 
its efficiency, accuracy, and applicability to different prob-
lems. Notably, the application of RANSAC for outlier elim-
ination has found success in diverse areas such as accurate 
object tracking [2], precise image matching [3-19], multi-
view image registration [4], image stitching [6], pose esti-
mation challenges [8,20], remote sensing image analysis 
[11], and panoramic image applications [13]. These studies 
have introduced enhancements to RANSAC, improving its 

ability to detect inliers [5,16-17],[20], refining its process 
for fundamental matrix estimation [7,15,18], adapting it for 
different geometric scenarios [9], enhancing camera param-
eter estimation [10], and addressing outlier challenges in 
3D image generation [12,14]. 

This paper aims to conduct a comparative analysis of two 
prominent RANSAC-based approaches: the homography 
matrix-based RANSAC and the fundamental matrix-based 
RANSAC. Our focus is on accurately estimating point cor-
respondences from two-view images under the constraints 
of epipolar geometry. We employed the RANSAC algo-
rithm to estimate precise homography and fundamental ma-
trices, and then conducted a comparison of these methods 
in terms of accuracy, robustness, and performance varia-
tions for finding correct point correspondences. 

Despite the widespread use of RANSAC, there remains 
a need for a comprehensive comparison between homogra-
phy and fundamental matrix-based approaches using this 
algorithm. By addressing this gap, we aim to investigate the 
strengths and weaknesses of each method, identifying 
where they work well or fail. This comparative study aims 
to provide valuable insights for practitioners and research-
ers in computer vision and related fields, aiding in the se-
lection of appropriate techniques based on specific applica- 
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tion requirements. 
The structure of this paper is organized as follows: Sec-

tion 2 describes the mathematical models of the homogra-
phy matrix, fundamental matrix, and the RANSAC method. 
Section 3 presents the processing techniques employed for 
outlier detection through the proposed estimations. Section 
4 discusses the comparison results between the homogra-
phy and fundamental matrix-based RANSAC methods, and 
Section 5 concludes the paper by summarizing key findings 
and discussing their implications. 

 

Ⅱ. MATHEMATICAL MODELS FOR USED 
METHODS 

2.1. RANSAC 
The RANSAC procedure begins with a small initial data 

set and iteratively expands it by incorporating consistent 
data to remove invalid data points. The formal steps of 
RANSAC are as follows [21]: 

Randomly select a subset 𝑆1 of 𝑛 data points from 𝑃, 
where 𝑃 is the set of data points and 𝑛 is the number of 
points needed to instantiate the model parameters. 

Instantiate the model 𝑀1 using subset 𝑆1. 
Determine the a consensus set 𝑃2 of points in 𝑃 that 

are within some error tolerance of 𝑀1. Identify a consen-
sus set, 𝑃2, consisting of points in 𝑃  that fall within a 
specified error tolerance of 𝑀1. 

If the size of 𝑃2 is greater than a threshold 𝑡 ሺ∣ 𝑃2 ∣൐𝑡), where 𝑡 is a function of the estimated number of gross 
errors in 𝑃, use 𝑃2 to compute a new model 𝑀2, possi-
bly using least squares. 

If ∣ 𝑃2 ∣ is less than t (∣ 𝑃2 ∣< 𝑡), randomly select a new 
subset 𝑆2 and repeat the process for a predetermined num-
ber of trials. If no consensus set with 𝑡 or more members 
is found after the trials, either use the model with the largest 
consensus set found or terminate the process as a failure. 

 
2.2. Fundamental Matrix Estimation with RANSAC 

Consider two cameras observe a point 𝑃  located at 
some distance in space, projected onto the points 𝑝ଵ and 𝑝ଶ  of the image plane under perspective projection. The 
camera centers are denoted as 𝑐ଵ and 𝑐ଶ. The baseline is 
connecting them. The epipolar plane defined by points 𝑐ଵ, 𝑐ଶ, and 𝑃, with 𝑚ଵ and 𝑚ଶ as the epipoles on the base-
line and image planes. The line between the points 𝑝ଵ and 𝑚ଵ  and the line between the points 𝑝ଶ  and 𝑚ଶ  are the 
epipolar lines [1].  

In Fig. 1, the imaging of epipolar geometry illustrates 
that for each point 𝑝ଵ in one image, there exists a corre-
sponding epipolar line 𝑙  in the other image. Any point 𝑝ଶ in the second image matching the point 𝑝ଵ must lie on 

the epipolar line 𝑙. This mapping from points to lines is rep-
resented by a unique 3×3 rank 2 homogeneous matrix, the 
fundamental matrix F as follows: 

 𝑝ଶ்𝐹𝑝ଵ = 0, (1)
 
where 𝐹 = ቎𝑓ଵଵ 𝑓ଵଶ 𝑓ଵଷ𝑓ଶଵ 𝑓ଶଶ 𝑓ଶଷ𝑓ଷଵ 𝑓ଷଶ 𝑓ଷଷ቏. (2)

 
The fundamental matrix represents the geometric rela-

tionship between two images of the same scene and is typ-
ically estimated using at least eight point correspondences. 
It's an essential concept in computer vision for various tasks 
related to image analysis and scene understanding. 

To compute the fundamental matrix using RANSAC and 
exclude outliers, we employ the following algorithm: 
1. Set the loop counter 𝑖 to zero, and the number of loops 𝑁 

to the specified number of random trials. 
2. Loop through the following steps while 𝑖 is less than 𝑁: 

a) Randomly select 8 pairs of points from pଵ and pଶ. 
b) Use the selected 8 points to compute a fundamental 

matrix 𝐹. 
c) Compute the inliers for all points in pଵ and pଶ based 

on ‖pଶ୘Fpଵ‖ < t. 
d) If there are more inliers than in the previous best, re-

place 𝐹 with the best matrix. 
e) Increment 𝑖 by 1. 

 
2.3. Homography Matrix Estimation with RANSAC 

The homography describes the mapping between two 
images that observe the same planar surface. By multiply-
ing the homography matrix with points 𝑝ଵ in one image, it 
allows to find their corresponding points 𝑝ଶ in the other 
image. Thus,  any point in the first image can be mapped 
to a corresponding point in the second image through 
homography. Mathematically, it is represented as follows: 

 𝑝ଶ = 𝐻𝑝ଵ, (3)

 
  

Fig. 1. Imaging of the epipolar geometry. 
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where H is a 3×3 homogeneous matrix given by: 
 𝐻 = ൥ℎଵଵ ℎଵଶ ℎଵଷℎଶଵ ℎଶଶ ℎଶଷℎଷଵ ℎଷଶ ℎଷଷ൩. (4)

 
Its element, ℎଷଷ is normalized to 1 so that 𝐻 has only 8 

degrees of freedom. To solve the homography matrix, we 
need at least four point pairs of matched corresponding 
points. In practice, we usually use more than four pairs of 
corresponding points due to noise.   

We use the following RANSAC algorithm to exclude 
outliers and compute the homography matrix from inliers: 
1. Set the loop counter 𝑖 to zero, and the number of loops 𝑁 

to the number of random trials specified. 
2. Loop through the following steps while 𝑖 is less than 𝑁: 

a) Randomly select 4 pairs of points from 𝑝ଵ and 𝑝ଶ. 
b) Use the selected 4 points to compute a homography 

matrix 𝐻. 
c) Compute the inliers for all points in pଵ and pଶ based 

on ‖𝑝ଶ −  𝐻𝑝ଵ‖ < t. 
d) If there are more inliers than in the previous best, re-

place 𝐻 with the best matrix. 
e) Increment 𝑖 by 1. 

   

Ⅲ. IMPLEMENTATION STEPS FOR 
MATCHING IMAGES 

We implemented the estimations using Visual C++ and 
the OpenCV (Open Source Computer Vision Library) ver-
sion 4.6.0 on a PC equipped with an Intel i7-9700 CPU run-
ning at 3.0 GHz, 16 MB of RAM, and a Microsoft 
LifeCAM. In this section, we explain the processing steps 
for implementing the two estimations for finding correct 
point correspondences. 

We captured hundreds of images of an object for the ex-
periment, selecting the first captured image as the left im-
age and subsequent images as the right images. Then fea-
ture points 𝑝ଵ in the left image were extracted using the 
ORB (Oriented FAST and Rotated BRIEF) feature detec-
tion algorithm. Similarly, feature points 𝑝ଶ in the right im-
age were also extracted. 

Secondly, feature points in the left image were matched 
with feature points in the right image using the Nearest 
Neighbors Approach, resulting in a correspondence set con-
taining both false matched pairs and correctly matched 
pairs. 

Thirdly, the homography matrix and fundamental ma-
trix-based RANSAC approaches were estimated to find the 
correct correspondences between the two images. 

Finally, we compared the results obtained from the 

homography matrix and fundamental matrix with RAN-
SAC and analyzed their performance using image datasets 
containing both planar and 3D objects. 

 

Ⅳ. EXPERIMENTAL ANALYSIS 

We conducted experimental analyses to evaluate the re-
sults of finding the correct correspondences (inlier point 
correspondence) using the homography matrix-based 
RANSAC (RANSAC_H) and fundamental matrix-based 
RANSAC (RANSAC_F) methods. To simplify notation in 
the experimental results, we renamed these methods ac-
cordingly. 

We created test datasets by capturing images while vary-
ing object positions in front of a stationary camera. The im-
ages were captured at a resolution of 640×360 pixels. In the 
left image, the object position was arbitrarily fixed, while 
in the right image, the object position was translated along 
the 𝑥, 𝑦, and 𝑧 axes and rotated around the 𝑥, 𝑦, and 𝑧 
axes. Translations along the 𝑥  and 𝑦  axes ranged up to 
150 mm, while translations along the 𝑧 -axis varied be-
tween 200-600 mm from the camera. Rotations around the 𝑥  and 𝑦  axes varied up to 20 degrees, and rotations 
around the 𝑧-axis varied up to 90 degrees in both clockwise 
and anti-clockwise directions. These datasets included hun-
dreds of images of the moving object. 

For the prepared dataset, we experimentally examined 
and compared the performance of RANSAC_H and RAN-
SAC_F methods. We compared the number of inlier and 
outlier correspondences between the left and right images. 
In the first case, we varied the rotation of the object in the 
images up to 20 degrees around the y-axis. Fig. 2 illustrates 
the comparisons of the numbers of correct and false corre-
spondences computed from RANSAC_H and RANSAC_F 
methods. We denoted the correct and false correspondences 
from RANSAC_H as Inlier_H and Outlier_H, respectively, 
and from RANSAC_F as Inlier_F and Outlier_F, respec-
tively. 

 

 
  

Fig. 2. Comparison of outlier and inlier correspondences for da-
taset where object was rotated around y-axis. 
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From Fig. 2, we observe that the number of inliers (In-
lier_F) is consistently higher than the number of inliers (In-
lier_H) computed using RANSAC_F and RANSAC_H, re-
spectively. As the rotation of the object around the y-axis 
increases, not only does the number of inliers decrease for 
RANSAC_H, but also the number of outliers (Outlier_H) 
increases. This suggests that RANSAC_H struggles with 
this dataset, likely due to its geometric assumptions, classi-
fying many correct correspondences as outliers. Specifi-
cally, most of the inlier correspondences identified by 
RANSAC_H were associated with the background part of 
the moving object in the images, as shown in Fig. 3. 

In the second case, where the rotation of the object in the 
images is varied up to 60 degrees around the z-axis, we 
computed inlier correspondences using both the RAN-
SAC_H and RANSAC_F methods. We then compared the 
number of inlier correspondences between the left and right 
images. Fig. 4 illustrates the comparisons of the numbers of 
correct correspondences computed from the RANSAC_H 
and RANSAC_F methods. 

From Fig. 4, it's evident that the numbers of inlier corre-
spondences (Inlier_F and Inlier_H) are similarly scattered. 
This similarity in distribution suggests that when the object 
is rotated around the z-axis, the computational results for 
inlier correspondences do not significantly differ between 
the two methods. The rotation of the object around z-axis 
doesn’t create 3D effect on the moving object like rotations 
around 𝑥 or 𝑦 axis. This observation implies that RAN-
SAC_H works well for planar movement of the object. 

In the final case, we assessed the performance of both 
methods in finding correct correspondences across three 

distinct datasets. The first dataset involved images with ob-
ject rotations around the y-axis, categorized into R1 (0−5 
degrees), R2 (5−10 degrees), R3 (10−15 degrees), and R4 
(15−20 degrees).  

For the second dataset, we rotated the object simultane-
ously around the 𝑦 and 𝑧 axes. Images were classified as 
R5 (y: 15 degrees, z: 0−10 degrees), R6 (y: 15 degrees, z: 
10−20 degrees), R7 (y: 15 degrees, z: 20−30 degrees), R8 
(y: 15 degrees, z: 30−40 degrees), and R9 (y: 15 degrees, z: 
40−50 degrees). 

The third dataset involved rotations around the 𝑦 axis 
with fixed rotations of x: 10 degrees and z: 90 degrees. Im-
ages were classified as R10 (y: 0−4 degrees), R11 (y: 4-8 
degrees), R12 (y: 8−12 degrees), R13 (y: 12−16 degrees), 
and R14 (y: 16−20 degrees). 

We computed the correct corresponding points for each 
image dataset using RANSAC_H and RANSAC_F meth-
ods and showed the average number of correct correspond-
ences in Fig. 5. Consistently, Fig. 5 shows that RANSAC_F 
yielded more correct correspondences compared to RAN-
SAC_H. 

In general, as the degree of 3D rotation increased, the 
number of correct corresponding points decreased for both 
methods. This effect is particularly notable for rotations 
around the x or y axis due to scaling side-effects, leading to 
noisy and unstable matched point correspondences. 

  

Fig. 4. Comparison of the number of correct correspondences for 
dataset where object was rotated around z-axis. 

 

(a) 
 

(b) 
 

  

Fig. 3. Right and false correspondences from RANSAC_H me-
thod. a. Inlier correspondences: Most of them are on the back-
ground part of the object rather than the object itself. b. Outlier
correspondences: Most of the correctly matched points are cate-
gorized as outliers. 

  

Fig. 5. Comparison of the average number of correct correspond-
dences for three distinct datasets. 
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V. CONCLUSION AND LIMITATION 

This study conducted a comparative analysis of homor-
gaphy matrix-based RANSAC (RANSAC_H) and funda-
mental matrix-based RANSAC (RANSAC_F) methods for 
outlier elimination in computer vision applications. The 
findings indicate that RANSAC_H performs well with pla-
nar movements, while RANSAC_F is more suited for 3D 
movements. However, limitations were identified: 

 
Noise Sensitivity: Both methods are sensitive to noise, 
which can affect the accuracy of outlier detection and 
corresponding point estimation.  
Computational Complexity: The iterative nature of 
RANSAC algorithms can lead to high computational 
costs, especially for large datasets with many outliers. 

 
In summary, while both RANSAC_H and RANSAC_F 

have their strengths in handling different types of move-
ments, they are both sensitive to noise. 
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