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I. INTRODUCTION  

Dance Quality Assessment (DanceQA) evaluates tech-

niques of performers dancing to music and provides their 

dance performance quality numerically. Along with peo-

ple’s interest in dancing, the size of the industry market re-

lated to dancing has been growing over recent years [1], and 

a large number of dance videos have been uploaded on so-

cial media. In addition, Breaking, a style of dance that orig-

inated in the United States in the 1970s, has been chosen to 

feature on the Paris 2024 Olympic sports program as a new 

sport [2]. In response to this general interest, the criteria for 

dance performance evaluation have evolved specifically. 

Researchers have studied guides for dance performance 

evaluation by judges considering physical ability and rhyth-

mic accuracy of the performers [3-5]. However, the hurdle 

of specialized knowledge makes non-experts inaccessible 

to DanceQA, and this leads to the need for DanceQA algo-

rithm which can learn the knowledge and evaluate automat-

ically. 

 The automation of DanceQA saves evaluators’ efforts 

by providing score predictions of dance performance qual- 

ity. When evaluating dance performance, the human evalu-

ators must watch every single video and determine perfor-

mance rating while closely looking into dance motions. 

Without the help of automated DanceQA, the dance perfor-

mance evaluation requires a significant amount of time for 

the evaluators to watch a lot of dance videos which are few 

minutes long. The automated DanceQA provides dance per-

formance scores and helps to select candidates which the 

evaluators should watch for sophisticated evaluation. This 

secondary role not only saves human resources, but also al-

lows for more efficient assessments by focusing the expert’s 

efforts on critical parts. 

The automated DanceQA is able to fulfill a key role as a 

main evaluator in situations where an expert is not availa-

ble. Since existing dance performance evaluation methods 

[3-4] are very dependent on the dance experts, they are 

rarely used in everyday situations due to their low accessi-

bility. It is difficult for non-experts to utilize DanceQA, 

which requires a lot of time and effort to learn related ex-

pertise for accurate evaluation. The automated DanceQA 

method can replace this process by training correlation be-

tween dance performance and its quality score with high 
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availability. 

 The automated DanceQA provides analysis of dance 

performance at joint or frame level to give feedback to a 

performer. In dance performance evaluation, the human 

evaluators usually give comments on the performance to 

the performer. Since the human evaluators are not always 

available, previous works [6-8] have analyzed dance per-

formance only the kinematic data of dance motion like joint 

positions or joint angles. This information is only shown as 

a graph and is not visualized for human perspective, making 

it difficult to understand intuitively. Deep learning tech-

niques which try to capture neural activation [9] or an at-

tention weight [10] have been developed to analyze predic-

tion results visually. DanceQA networks can visualize the 

activation of spatial joints or temporal frames which con-

tribute to the dance quality score by utilizing these tech-

niques. 

In this paper, we propose Dance Quality Assessment 

Framework to handle issues and include datasets, dance 

quality measures, and regression networks for DanceQA as 

shown in Fig. 1. 3D motion data are collected in two ways, 

3D pose estimation and motion capture, to build DanceQA 

dataset for subjective test which provides a dance quality 

score by ranking performers from relative comparison re-

sults. For dance quality labeling, Performance Competence 

Evaluation Measure (PCEM) [11] guides are adopted, and 

the subjective test involves comparing a pair of dance per-

formance and choosing the relatively better one following 

the guides. To capture important elements of dance motion, 

Kinematic Information Measure and Kinematic-Music 

Beat Alignment are designed by examining kinematic sta-

tistics and multimodal similarity. To target the dance quality 

score ranked by the subjective test, the regression networks 

sufficiently long and dense 3D motion by considering di-

verse characteristics of 3D skeletal sequence and fusing 

them in transformers while referring results of the dance 

performance measures. Lastly, to measure kinematic and 

music beat alignment, multi-modal attention blocks are de-

signed to train correlation between multi-modal inputs, 

dance motion and music. 

At first, 3D motion data are inferred by 3D pose estima-

tor from RGB videos, which are captured by the public and 

uploaded to the web. These videos have diversity in terms 

of dance quality, but the inferred 3D motion is not accurate 

due to limitations of the estimator. By leveraging kinematic 

characteristics of the 3D dance motion, dance proficiency 

is measured by the kinematic information entropy and the 

multi-modal similarity based on previous quality assess-

ment methods [12]. A new representation of 3D motion is 

proposed to link spatially or temporally adjacent joints ac-

cording to natural connection of skeletal structure. Existing 

spatial or temporal difference vectors [10] are replaced by 

the proposed dependency inputs, which show the higher 

correlation between subjective scores and score predictions 

in experimental results. To regress the dance quality scores 

from 3D motion data, we employ transformers [13] as a 

baseline, which trains spatial or temporal dependency via 

self-attention matrices. After processing each input, two 

streams are fused in fusion transformers instead of ensem-

ble learning which is used commonly in human action un-

derstanding. Multi-modal transformers learn correlation be-

tween the trained dance motion features and music features 

for beat alignment and the output features are regressed by 

the subjective quality scores. 

In summary, this research presents a novel approach to 

dance performance evaluation by integrating kinematic in-

formation entropy and multi-modal beat similarity. In sec-

tion II, we propose the new dance quality transformers 

model, and we will show the performance through many 

experiments in Section III. The originality lies in leveraging 

deep learning to automate and enhance the objectivity of 

dance quality assessment. The main contributions of the 

proposed DanceQA framework can be included as follows: 

  

‧ Dance performance measures are proposed to leverage 

kinematic characteristics and beat alignment for exam-

ining important factors in DanceQA. 

‧ A new representation of 3D skeletal motion is proposed 

to link spatially or temporally adjacent joints for natu-

ral connection of skeletal joints. 

‧ Intra-motion transformers are designed by embedding 

the kinematic entropy to capture the dance quality in 

 

(a) Dance and music data. 

 

 
(b) Dance quality measure. 

 

 
(c) DanceQA transformers. 

  

Fig. 1. Main components for dance quality assessment framework. 

The proposed framework uses multi-modal data, (a) dance and 

music data, and (b) dance quality measure is designed to examine 

the statistics of each joint and the multimodal beat alignment. 

Based on the results of these measures, the core modules in (c) 

DanceQA transformers are proposed to predict dance quality 

scores accurately. 



Journal of Multimedia Information System VOL. 11, NO. 2, June 2024 (pp. 149-156): ISSN 2383-7632 (Online) 

https://doi.org/10.33851/JMIS.2024.11.2.149 

151 

 

spatial dimension and fuse the features with different 

characteristics. The dance motion features, and music 

feature are trained together for multi-modal learning 

by the proposed inter-motion and multi-modal trans-

formers. 

 

Ⅱ. DANCE QUALITY TRANSFORMERS 

Overall network architecture is shown in Fig. 2. The da-

taset including 3D dance motion data and its label for 

DanceQA is stored in the database of Fig. 2 and 3D skeletal 

data are represented by the features with different charac-

teristics and used as inputs to these networks. Intra-motion 

Transformers learn spatial dependency of each feature 

within the spatial tokens based on entropy-embedded atten-

tion, and these features are fused by Fusion Spatial Trans-

formers to consider diverse characteristics of features. Tem-

poral dependency is trained with following Inter-motion 

Transformers, and music features are trained together in 

multi-modal Transformers to align kinematic and musical 

beats. The details of the proposed networks for 3D 

DanceQA will be described in following subsections. 

  

2.1. Understanding of Choreography 

The Dance Quality Assessment predicts dance quality 

score from dance performance in terms of 3D human mo-

tion. The 3D human motion data consists of 3D skeletal se-

quence that articulates human motion with major joint po-

sitions. Let 𝑝  be joint positions of the skeletal sequence 

and 𝑝 is defined as follows: 
  

 𝑝 = {𝑝(𝑡,𝑗) ∈  ℝ3|𝑡 = 1, … , 𝑇, 𝑗 = 1, … , 𝐽}, (1) 
  

where 𝑇 and 𝐽 is the number of frames and joints of the 

3D skeleton sequence. The dance quality score 𝑦  is la-

beled and coupled with its corresponding 3D skeleton se-

quence 𝑝. The DanceQA dataset can be defined as follows: 

  

 𝐷 = {(𝑝(1), 𝑦(1)), (𝑝(2), 𝑦(2)), … , (𝑝(𝑁), 𝑦(𝑁))}, (2) 

 

where 𝑁 is the number of data pairs in the dataset. 

 

2.2. Feature Representation 

Previous works usually used these joint positions or their 

spatial and temporal difference vectors, which represent 

bone and velocity vectors, to learn semantics of 3D skeleton 

sequence. In DanceQA, the body shape and movement in 

dance performance can be articulated by these two features, 

which are very useful to predict its dance quality score. 

These features are also used in the proposed network to con-

sider diverse characteristics of dance motion. However, 

these features could not represent real bone and velocity 

vectors because their start and end positions of the vectors 

disappeared as shown in Fig. 3(a). They are just vectors 

starting from the origin, and learning algorithms cannot un-

derstand the bone and velocity information the way human 

perceives. 

To help networks remember the information, as shown 

in Fig. 3(b), we propose joint-dependent features which con- 

 
  

Fig. 2. Data preprocessing and DanceQA network architecture. 3D skeletons and music features are extracted from the dance 

video. Dance videos, 3D motion data, and their annotations are stored in the database with their metadata which describes dance 

performance. The skeletal data is represented as joint, bone, and motion features, which are used as inputs for DanceQA networks. 

These networks consist of Spatial, Temporal, and Multi-modal Transformers and predict a dance quality score of the input 3D 

sequence. 
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tain the start and end positions of the bone and velocity in-

formation instead of spatial and temporal difference. This is 

more similar to human perception than the difference vector 

representation when observing the skeleton sequence. The 

bone dependent (spatially joint-dependent) features 𝑏 are 

represented as follows: 

 

 𝑏 = {𝑏(𝑡,𝑗) ∈  ℝ6|𝑝(𝑡,𝑖1)⨁𝑝(𝑡,𝑖2), 𝑖 = 1, … , 𝐽 − 1}, (3) 

 

where ⨁ , 𝑖1 , 𝑖2  is the operation to concatenate vectors, 

the start and end joints of 𝑖𝑡ℎ bone, respectively. The mo-

tion dependent (temporally joint-dependent) features 𝑚 

are represented as follows: 

 

 𝑚 = {𝑚(𝑡,𝑗) ∈  ℝ6|𝑝(𝑡−1,𝑗)⨁𝑝(𝑡,𝑗), 𝑡 = 2, … , 𝑇}. (4) 

 

The spatial and temporal dependency of skeletons is em-

bedded in these features respectively while preserving joint 

positions. In transformers, it is difficult to reflect the joint 

relationship without any constraint on spatial or temporal 

self-attention matrices. Nevertheless, the dependent fea-

tures make it possible to train the bone and motion vectors 

simply by connecting dependent joints in preprocessing 

step without information loss and improve dance quality 

prediction performance in DanceQA. 

 

2.3. Input Encoding 

Previous Skeleton has the characteristics of both natural 

language and images in spatial and temporal dimensions, 

respectively. The joints have specific semantics such as 

neck, hip, shoulder, elbow, wrist, knee, ankle and so on like 

words in natural language, but the frames are not semantic- 

cally separated like pixels in images. Thus, each joint is 

used as a spatial token and multiple frames are used as a 

temporal token to explore spatial or temporal dependency 

in transformers. 

The spatial and temporal tokens are described as the red 

box and the blue box, respectively, in Fig. 4. The input fea-

tures are reshaped into the spatial token, which is the short-

est unit to analyze long dance sequence. The 𝑖𝑡ℎ spatial to-

ken of the 𝑗𝑡ℎ joint 𝑋𝑆,(𝑙,𝑗) is defined as follows: 

 

 𝑋𝑆,(𝑙,𝑗) = {𝑋
(

𝑇

𝐿
×(𝑙−1)+1,𝑗)

, … , 𝑋
(

𝑇

𝐿
×𝑙,𝑗)

} ∈ ℝ
3𝑇

𝐿 , (5) 

 

where 𝐿 is the number of tokens. The spatial tokens are 

concatenated as the temporal token including all the joints. 

The 𝑙𝑡ℎ temporal token is defined as follows: 

 

 
𝑋𝑇,(𝑙) = {𝑋𝑆,(𝑙,1), … , 𝑋(𝑆,(𝑙,𝐽))} ∈ ℝ

3𝑇𝐽

𝐿 . (6) 

 

Each spatial token is embedded with the channel size 

CT/L for the spatial transformers, and the temporal tokens 

are used as inputs for the temporal transformers after J2L 

Tokenization where 𝐿  is the number of the temporal to-

kens. The number of frames within the token T/L is very 

important factor for DanceQA. The temporal token with the 

small number of frames cannot represent sufficiently the 

unit motion while it is difficult to understand the dance se-

quence if the unit motion is too long. We find the optimal 

T/l empirically by testing multiple values in next Section. 

  
2.4. Intra- and Inter-Motion Transformers 

The Intra-motion transformers are designed to train not 

only spatial dependency of diverse skeletal features but also 

short-term characteristics of the unit motions. After the in-

put embedding, the positional embedding is injected for the 

 
(a) Difference vector representation 

 

 
(b) Joint dependency representation 

  

Fig. 3. Bone features represented in the form of (a) difference vec-

tor representation and (b) joint dependency representation respec-

tively. 

 
  

Fig. 4. Spatial and temporal tokens for the transformers. In the 

Spatial Transformers, the spatial dependency of joints within the 

basic motion is trained locally, and the temporal dependency of 

the temporal tokens is trained globally to predict the dance quality 

score. 
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transformers to make use of the joint positions. For the in-

ter-motion transformers, outputs of the intra-motion trans-

formers are concatenated into the temporal token. As shown 

in Fig. 4, all the spatial tokens within the unit motion are 

gathered together for the temporal token. 

After the intra-motion and inter-motion transformers, the 

correlation between kinematic and musical beats are trained 

by the multi-modal transformers in Fig. 2. The skeletal fea-

tures are trained by self-attention of the inter-motion trans-

formers while the music feature is trained by cross-attention 

of the multi-modal transformers. 

 

2.5. Overall Architecture Design 

The proposed overall network architecture is proposed as 

shown in Fig. 2 consisting of the input features and trans-

formers. Single-Stream Transformers (SST) learn spatial 

and temporal dependency of each feature. Feature Fusion 

Transformers (FFT) learn dependency between multiple 

features, which are trained sufficiently from each SST. Un-

derstanding each feature independently helps to fuse multi-

ple features together. At last, for multi-modal learning be-

tween kinematic and music features, multi-modal trans-

formers and inter-motion transformers are trained together. 

The inter-motion transformers learn temporal dependency 

of the outputs of the FFT only by their self-attention. The 

multi-modal transformers learn correlation between the 

musical features extracted from wave files and the kine-

matic features from the inter-motion transformers. The 

quality tokens denoted as 𝑄  of multi-modal beat align-

ment and inter-motion transformers in Fig. 2 are regressed 

by the linear layer to predict the dance quality score. Mean 

Squared Error (MSE) is employed as loss function to train 

the proposed transformers by decreasing the difference be-

tween dance quality prediction and its subjective score. 

 

Ⅲ. EXPERIMENTS 

3.1. Dataset Protocol 

To measure performance of the proposed dance quality 

measure and DanceQA networks, we suggest two protocols. 

Protocol I contains only ‘Dynamite’ of BTS. 23 videos are 

used for training and 10 videos are used for testing. Protocol 

II contains only ‘Kill this love’ of BLACKPINK. 21 videos 

are used for training and 10 videos are used for testing. Pro-

tocol I and II are tests to measure the quality of dance per-

formance for the same choreography. 

 

3.2. Performance Comparison 

To show the performance of the proposed transformers, 

ST- Graph Convolutional Network (GCN) [14], AGCN [10] 

and FACT [15] are tested with various features. ST-GCN 

and AGCN are the most popular graph convolutional net-

works in action recognition. These networks build adja-

cency matrices according to the natural connection of skel-

eton and convolve neighbored joints. FACT uses full atten-

tion to find kinematic and musical relationship at frame 

level without considering spatial structure within a frame. 

For performance comparison, we used two metrics: Pear-

son Linear Correlation Coefficient (PLCC) and Spearman 

Rank Correlation Coefficient (SRCC). PLCC measures the 

linear relationship between two continuous variables. It 

provides a value between −1 and 1, where 1 indicates a per-

fect positive linear correlation, −1 indicates a perfect nega-

tive linear correlation, and 0 indicates no linear correlation. 

Moreover, SRCC measures the strength and direction of the 

monotonic relationship between two ranked variables. It is 

a non-parametric measure and provides a value between −1 

and 1, similar to PLCC. 

FACT and ST-GCN shows the lowest and the highest 

correlation, respectively, among the other methods. The to-

kens of FACT include both 3D skeletons and musical fea-

tures, which blend and seem to disturb predicting their 

dance quality score, and this leads to the design of the multi-

modal transformers that keep the kinematic feature from the 

musical feature. ST-GCN and AGCN have their adjacency 

matrices, which define connections among joints or bones. 

This definition may be very good constraint on action 

recognition but does not help to find salient joints in the 

DanceQA. There are salient joints, especially an ankle in 

this case, which have high correlation with the dance qual-

ity score. This distinct point leads to using transformer 

blocks to identify salient joints readily for dance quality 

prediction. 

  

3.3. Component Analysis 

For ablation study, three types of networks are listed in 

Table 1 with various input features. Inter-motion only con-

siders the temporal relationship between the tokens. Intra-

motion+Inter-motion handles both spatial and temporal at-

tentions sequentially and show performance improvement 

compared to Inter-motion only. Intra-motion+Inter-motion 

+Multi-modal BA covers cross-modal correlation between 

kinematic and musical features beyond spatial and temporal 

modeling and show the significance of musical information 

in the DanceQA. Intra-motion+Inter-motion+Multi-modal 

BA+KE embedding adds kinematic entropy embedding to 

attention matrices in intra-motion transformers. 

There are the performance improvements with additional 

transformers or musical features. Inter-motion only shows 

the lowest accuracy in the ablation study, and the addition 

of intra-motion transformers makes focused on the salient 

joints. As previously mentioned about FACT, it is very crit-

ical for the quality regressors to figure out spatial charac- 
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teristics for dance quality prediction. Also, cross-attention 

of multi-modal transformers improves the prediction per-

formance by learning cross-correlation between kinematic 

and musical features regardless of the feature type.  

 

Ⅳ. CONCLUSION 

In this paper, we present a DanceQA framework based 

on transformer architecture. The proposed dance quality 

measures, kinematic entropy, and multi-modal beat similar-

ity, remarkably distinguish salient joints in the DanceQA. 

The proposed DanceQA transformers capture salient body 

parts and frames in their attention weights that contribute to 

the dance quality prediction while outperforming other 

GCNs and transformers. We present various experimental 

results and analyses which show how to capture the dance 

quality. This framework demonstrates the feasibility of the 

DanceQA in 3D skeleton domain for future works. We train 

only single choreography, but the DanceQA framework 

needs to handle more than two choreographies for evaluat-

ing unseen choreography. 
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