
Journal of Multimedia Information System VOL. 11, NO. 3, September 2024 (pp. 185-192): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2024.11.3.185

185

I. INTRODUCTION

BC is the node ranking algorithm that ranks nodes based
on their involvement in spreading information through the
network. If BC score for a node is high, it means that a node
is an important player in spreading information in the net-
work. Let's see some of the applications of BC in networked
system. BC is used in analyzing distributions of the citizens
and road traffic between the region currently under devel-
opment and other regions of the city [1]. Structural proper-
ties of the networks consist functional units of the brain
when it's under problem solving process are studied using
BC [2]. Its results show that BC can help in the design of
brain-computer interfaces for the estimation of cognitive
load of brain. Researchers of the work [3] concluded that
incomplete connections of a network can be predicted using
BC. BC is used in analyzing the locations of the people in-
volved in drug trafficking to show that the identities with
high BC has a lesser probability of getting arrested [4].

It is rare for the nodes distanced far away to exchange
information with each other in real world network. In some
applications, these nodes can be considered disconnected.
K-BC ranks the nodes based upon this assumption by not
including the paths which are too long (more than 𝑘 hops
away in unweighted graph or more than 𝑘 distance away
in weighted graph) [5-8]. Therefore, it highlights those

nodes which are actively engaged in the communication of
the network. In other words, k-BC has its own applications
which BC can't be good at [9].

Fastest known algorithm for calculating BC, Brandes' al-
gorithm, runs in 𝑂(𝑛𝑚) time complexity where 𝑛 is the
number of nodes and 𝑚 is the number of edges [10]. It
runs single source shortest path algorithm from every ver-
tex and updates BC scores accordingly. The choices of sin-
gle source shortest path algorithm are BFS algorithm for
unweighted graph (𝑂(𝑛 + 𝑚)), and Dijkstra's algorithm for
weighted graph (𝑂(𝑚 + 𝑛𝑙𝑜𝑔𝑛)) [11]. Therefore, the run-
ning time of Brandes' algorithm is 𝑂(𝑛𝑚) for unweighted
graph and 𝑂(𝑛𝑚 + 𝑛ଶ𝑙𝑜𝑔𝑛) for weighted graph. Real
world datasets are getting larger and larger and it is crucial
for BC algorithms to run faster in order to process large
scale of data available. It's possible to estimate BC score by
sampling the nodes from which single source shortest path
algorithm runs, instead of running it from all the nodes [12-
15]. There are not many works done to estimate k-BC alt-
hough it mentioned in [14] possibility of using k-bounded-
betweenness with their algorithm. Our contribution is that
distance limited versions of estimated BC [13] and approx-
imate BC [14] are designed namely estimated k-BC (ek-BC)
and approximate k-BC (ak-BC). Both reduce algorithmic
complexity 𝑂(𝑟𝑚) to 𝑂(𝑟𝑑௞) by their distance limted
nature. We show their convergences with k-BC algorithm.

Estimated Distance Limited Betweenness Centrality Based on

Estimated Betweenness and Approximate Betweenness Algorithms

Gantulga Gombojav1, Dalaijargal Purevsuren1*

Abstract

We propose two kinds of estimated distance limited betweenness (k-BC) algorithm by combining k-BC with two estimated centrality
betweenness centrality algorithms – publicly known as estimate betweenness and approximate betweenness. Proposed two algorithms are
experimented on seven large real-world datasets and compared against their original algorithms. Experimental result shows that both algo-
rithms converge with k-BC and runs faster. Estimated k-BC based on estimated betweenness algorithm performs better than the other in
respect to running time and similarity to k-BC. K-BC values are calculated at least 18−439 times faster by using these estimated k-BC
algorithms.

Key Words: Betweenness Centrality, Estimated Betweenness, K-Betweenness, Estimated K-Betweenness.

Manuscript received May 12, 2024; Revised June 24, 2024; Accepted July 09, 2024. (ID No. JMIS-24M-05-017)
Corresponding Author (*): Dalaijargal Purevsuren, +976-8800-5204, dalaijargal@gmail.com
1Department of Information and Computer Sciences, National University of Mongolia, Ulaanbaatar, Mongolia, gantulga_g@num.edu.mn,
dalaijargal@gmail.com

Estimated Distance Limited Betweenness Centrality Based on Estimated Betweenness and Approximate Betweenness Algorithms

186

Also, running time and quality of node ranking are studied
using various methods and compared against their original
algorithms. Lastly, we will show their application on a
weighted network. Our proposed algorithms are defined in
second section. Third sections contain the experimental re-
sults. Fourth section contains conclusion of our work.

II. ESTIMATED K-BC

2.1. Betweenness Centrality

Given a graph 𝐺 = (𝑉, 𝐸), betweenness value of a ver-
tex 𝑣 ∈ 𝑉 is defined by the sum over all 𝑠, 𝑡 pair depend-
ency (equation (1)). Pair dependency is 𝛿௦௧[𝑣] = ఙೞ೟[௩]ఙೞ೟

the ratio of the number of the shortest paths between 𝑠 and 𝑡 which includes 𝑣 (𝜎௦௧[𝑣]) to the number of the shortest
paths between 𝑠 and (𝜎௦௧) . BC exacts how much infor-
mation is flowing through a node if information travels in
shortest paths.

 𝐵𝐶(𝑣) = ෍ 𝜎𝑠𝑡[𝑣]𝜎𝑠𝑡 = ෍ 𝛿𝑠𝑡[𝑣].𝑠,𝑡∈𝑉𝑠,𝑡∈𝑉 (1)

Brandes' algorithm finds an exact betweenness value by

dynamic programming technique to cleverly update pair de-
pendency after each single source shortest path runs. We
will refer to this algorithm [10] as BC from now on. While
multi-path single source shortest path algorithm from 𝑠
node is running, it stores predecessor set 𝜋௦[𝑣] and 𝜎௦[𝑣]
the number of shortest paths from 𝑠 to 𝑣 for every node 𝑣 . Then, 𝛿௦[𝑣] the pair dependency of node 𝑣 starting
from 𝑠 node is 𝛿௦[𝑣] = ∑ 𝛿௦௧[𝑣]௧∈௏ . This can be further
expanded by introducing vertex and edge combination as
shown in equation 2 where 𝛿௦௧[𝑣, (𝑣, 𝑤)] denotes the de-
pendency of the paths taking (𝑣, 𝑤) edge from 𝑣 on all 𝑠 − 𝑡 shortest paths. Total dependency of 𝑣 starting from 𝑠 node (𝛿௦[𝑣]) can be summed over 𝛿௦௧[𝑣, (𝑣, 𝑤)] where 𝑤 is the node whose predecessor is 𝑣 on 𝑠 − 𝑡 shortest
paths. In other words, all the shortest paths where one visits 𝑣 and then 𝑤 node are included in 𝛿௦[𝑣].

 𝛿௦[𝑣] = ෍ 𝛿௦௧௧∈௏ [𝑣] = ෍ ෍ 𝛿௦௧[𝑣, (𝑣, 𝑤)]௪:௩∈గೞ[௪]௧∈௏
= ෍ ෍ 𝛿௦௧[𝑣, (𝑣, 𝑤)]௧∈௏ .௪:௩∈గೞ[௪] (2)

The dependency of 𝑣 node and edge (𝑣, 𝑤), 𝛿௦௧[𝑣, (𝑣, 𝑤)], can be written as the relation shown in equa-

tion (3). This relation is trivial when 𝑡 = 𝑤 since 𝜎௦௧

number of 𝑠 − 𝑡 shortest paths is equal to 𝜎௦௪, of which
exactly 𝜎௦௩ of them passes through 𝑣 and uses (𝑣, 𝑤)
edge to reach 𝑤 node.

 𝛿௦௧[𝑣, (𝑣, 𝑤)] = ቐ ఙೞೡఙೞೢ , 𝑡 = 𝑤ఙೞೡఙೞೢ ∙ ఙೞ೟[௪]ఙೞ೟ , 𝑡 ≠ 𝑤. (3)

Now for 𝑡 ≠ 𝑤 case, number of the 𝑠 − 𝑡 shortest

paths which include 𝑤 node is equal to 𝜎௦௧[𝑤] = 𝜎௦௪ ∙𝜎௪௧. Because all the 𝑠 − 𝑤 shortest paths can be merged
with 𝑤 − 𝑡 shortest paths to create 𝑠 − 𝑡 shortest paths if 𝑤 is on 𝑠 − 𝑡 shortest path. Number of 𝑤 − 𝑡 shortest
path becomes 𝜎௪௧ = 𝜎௦௧[𝑤] 𝜎௦௪⁄ from previous definition.
Then, number of shortest paths passing through 𝑣 and tak-
ing (𝑣, 𝑤) edge is the multiplication of 𝜎௦௩ and 𝜎௪௧ and
replacing 𝜎௪௧ with previous definition gives following
equation.

 𝜎௦௩ ∙ 𝜎௪௧ = 𝜎௦௩ ∙ 𝜎௦௧[𝑤]𝜎௦௪ .

We divide this equation by 𝜎௦௧ to get 𝛿௦௧[𝑣, (𝑣, 𝑤)] de-

pendency (equation (3)).
Now, if we use the system of equations (equation (3)) in

equation (2) which finds dependency of 𝑣 node starting
from 𝑠 source node, we get the following equation.

 ෍ ෍ 𝛿௦௧[𝑣, (𝑣, 𝑤)]௧∈௏௪:௩∈గೞ[௪]
= ෍ ൭𝜎௦௩𝜎௦௪ + ෍ 𝜎௦௩ ∙ 𝜎௦௧[𝑤]𝜎௦௪௧∈௏ ௪⁄ ൱௪:௩∈గೞ[௪]
= ෍ 𝜎௦௩𝜎௦௪௪:௩∈గೞ[௪] ∙ (1 + 𝛿௦[𝑤]).

(4)

It can be seen from the equation that 𝛿௦[𝑣] is recurrent.

So the dynamic programming technique can be applied. We
can process this recurrence starting from the nodes furthest
from the source. Iterating over all 𝑠 ∈ 𝑉 to add up 𝛿௦[𝑣]
gives betweenness centrality in 𝑂(𝑛𝑚) complexity on un-
weighted graph.

Estimated betweenness (e-BC) algorithm [13] is similar
to BC but instead of calling SSSP from every node, it sam-
ples 𝑟 number of vertices and calls SSSP algorithm from
each of the sampled vertices. So, we have partial dependen-
cies from 𝑟 SSSP calls. In order to extrapolate this infor-
mation, current betweenness value of each 𝑣 node is mul-
tiplied by 2𝑛/𝑟. This algorithm is known to produce good
approximation result although there is no theoretical error
estimation in the paper. Its time complexity is 𝑂(𝑟𝑚) for
unweighted graphs and 𝑂(𝑟𝑚 + 𝑛𝑟𝑙𝑜𝑔 𝑛) for weighted
graphs.

Journal of Multimedia Information System VOL. 11, NO. 3, September 2024 (pp. 185-192): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2024.11.3.185

187

Approximate betweenness (a-BC) algorithm [14] sam-
ples paths unlike e-BC. It determines sampling size 𝑟 from
algorithm parameters and diameter of a given graph. Then,
it chooses 𝑢 and 𝑣 nodes randomly and runs SSSP algo-
rithm from 𝑢 to 𝑣. For each sample 𝑢 and 𝑣, it samples
a path with weight according to number of shortest paths
running through each node on 𝑢 − 𝑣 shortest paths. Each
node on the sampled path receives 1/𝑟 value added to its
BC. Unlike e-BC, estimated betweenness values of a-BC
has theoretical bound epsilon (deviations are within epsilon
with probability 1 − 𝛿). Its time complexity is 𝑂(𝑟𝑛) for
unweighted graphs and 𝑂(𝑟𝑚 + 𝑛𝑟𝑙𝑜𝑔 𝑛) for weighted
graphs. Its running time is the same as e-BC but it runs
slower than e-BC because it chooses larger sample size to
achieve a theoretical bound.

k-BC algorithm [7] puts distance limit on shortest paths.
k-BC is used in new types of problems like DCNP and some
real-world cases. Also, it can be an effective estimated be-
tweenness measurement. Distance limit is a hop distance
for unweighted graphs. Graph traversal is stopped when
hop distance reaches 𝑘 in BFS algorithm. Time complex-
ity of BFS becomes 𝑂(𝑑௞) where 𝑑 is branch factor and 𝑘 is distance limit. Distance limit 𝑘 = 3 is used in dis-
tance limited problems like DCNP making single BFS call
a constant when branch factor is small [21]. Distance is lim-
ited by range for weighted graph. We can stop Dijkstra's al-
gorithm once the distance of the current minimum exceeds
the range limit. K-BC alone is able to reduce running time
drastically when graph is sparse which is the case for real
world instances.

BC and k-BC values are illustrated on a simple graph in
Fig. 1(a) and Fig. 1(b) (𝑘 = 2 is used) respectively. Let’s
see how BC value of node 2 is calculated. First, BFS from
node 1 is called. Then, starting from the furthest node which
is 5, pair dependencies are calculated. Ratio ఙ[ଶ]ఙ[ହ] (1 + 𝛿[5]) = ଵଵ (1 + 0) = ଵଵ is added to the dependency of pre-

decessor 2. In the same way, ଵଶ is added to the dependency
of predecessor 2 when node 4 is processed next. Because
there are two shortest paths from 1 to 4 and and only one of
them passes through 2. Then, there is no other nodes from
source 1 to contribute to node 2. When BFS is called from
3, the path from 3 to 5 adds ଶଶ = 1 . When BFS is called

from 4, the paths from 4 to 5 and 4 to 1 add 1 and ଵଶ respec-
tively. The paths from 5 to 1, 5 to 4 and 5 to 3 add 1, 1, and ଶଶ = 1 respectively. Total of these dependencies sum up 7.
K-BC is calculated in the same way but only the paths with
length less than or equal to 𝑘 = 2 is considered. Therefore,
k-BC value of node 2 consists of the dependencies from the
paths 1 to 5, 5 to 1, 1 to 4, 4 to 1, 4 to 5 and 5 to 4.

2.2. Estimated Betweenness
We created estimated k-betweenness algorithm (ek-

BC) by combining e-BC with k-BC. We replaced SSSP
algorithm in e-BC with distance limited version. Pseudo
code of ek-BC is shown in Algorithm 1. It takes 𝐺 =(𝑉, 𝐸) graph, 𝑟 sample size and 𝑘 distance bound.
First, it initializes BC array to store betweenness values
for all vertices (lines 1−2). Then, it samples 𝑟 vertices
from 𝑉 randomly. For each sampled vertex 𝑠 in 𝑉, it
fills dependency array with zeros and calls multipath
SSSP limited by 𝑘 which returns 𝑆 explored vertices
sorted by their distance from 𝑠 node, 𝜎 number of
shortest paths passing through a vertex and predecessor
array. Predecessor array is an array of arrays since each
node can have multiple predecessors for storing multiple
shortest paths. The vertices are processed starting from
the furthest vertex from 𝑠 node. For each 𝑢 node, its

Algorithm 1: ek-BC(𝐺 = (𝑉, 𝐸), 𝑟, 𝑘)
1: 𝑓𝑜𝑟 ∀𝑢 ∈ 𝑉
2: 𝐵𝐶[𝑢] ← 0
3: 𝑉′ ← {𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑉}
4: 𝑓𝑜𝑟 ∀𝑠 ∈ 𝑉′
5: 𝑓𝑜𝑟 ∀𝑢 ∈ 𝑉
6: 𝛿[𝑢] ← 0
7: // 𝑆 explored nodes sorted by distance from 𝑠
8: // 𝜎 number of shortest paths
9: // 𝑝𝑟𝑒𝑑 is the predecessor array of arrays
10: 𝑆, 𝜎, 𝑝𝑟𝑒𝑑 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ_𝑘_𝑆𝑆𝑆𝑃(𝐺, 𝑘, 𝑠)
11: 𝑤ℎ𝑖𝑙𝑒 𝑆 ≠ ∅
12: 𝑢 ← 𝑆. 𝑝𝑜𝑝() // 𝑝𝑜𝑝 𝑙𝑎𝑠𝑡 𝑣𝑒𝑟𝑡𝑒𝑥
13: 𝑓𝑜𝑟 ∀𝑣 ∈ 𝑝𝑟𝑒𝑑[𝑢]
14: 𝛿[𝑣] ← 𝛿[𝑣] + (𝜎[𝑣]/𝜎[𝑢]) ∙ (1 + 𝛿[𝑢])
15: 𝑖𝑓 𝑢 ≠ 𝑠
16: 𝐵𝐶[𝑢] ← 𝐵𝐶[𝑢] + 𝛿[𝑢]
17: 𝑓𝑜𝑟 ∀𝑣 ∈ 𝑉
18: 𝐵𝐶[𝑣] ← 𝐵𝐶[𝑣] ∙ (2𝑛/𝑘)

Fig. 1. BC and k-BC values of the graph are shown in extended
label. BC is shown on the left (a) and k-BC is shown on the right
(b). 𝐾 = 2 is used here.

Estimated Distance Limited Betweenness Centrality Based on Estimated Betweenness and Approximate Betweenness Algorithms

188

dependency contribution to the predecessor nodes is cal-
culated and added to the corresponding predecessor
(lines 13−14). If 𝑢 node is not 𝑠 node, its dependency
starting from 𝑠 node is finalized and added to 𝐵𝐶[𝑢]
(lines 15−16). Finally, BC calculation is scaled by mul-
tiplying each BC value by 2𝑛/𝑟 (line 18).

2.3. Approximate k-Betweenness

Approximate k-betweenness (ak-BC) algorithm is cre-
ated by combining k-BC with a-BC (Algorithm 2). First,
the diameter of a given graph is estimated to calculate the
sample size needed. Given 𝜖 and 𝛿 parameters, it calcu-
lates number of samples need to achieve the bound which
states that the deviation of approximate betweenness value
is within 𝜖 with probability 1 − 𝛿. Then, it initializes BC
array to zero. For each of the 𝑟 samples, 𝑢 and 𝑣 nodes
are selected randomly and multipath SSSP limited by 𝑘 is
called to find all the shortest paths between 𝑢 and 𝑣
(lines 6−7). Then, it selects a single path among the shortest
paths with weighted probability (lines 9−18). Selection pro-
cess starts with 𝑣 endpoint and next intermediate vertex
(predecessor of the current vertex) is chosen by a weighted
random choice (lines 12−15). The weight assigned to each
predecessor depends on number of paths passing through it.
Higher the number of shortest paths passing through a node

is, the more likely it is for the node to be chosen. If the cho-
sen vertex is not an endpoint, its betweenness value is in-
creased by 1/𝑟 (lines 17−18).

2.4. Time Complexity

Time complexity of ak-BC and ek-BC depends on the
sample size and SSSP algorithm used. It is shown that dis-
tance limited BFS call takes 𝑂(𝑑௞) time and it becomes a
constant when branching factor 𝑑 is small [21]. So, time
complexity of both algorithms is 𝑂(𝑟𝑑௞) for unweighted
graph. As for weighted graph, it's difficult to draw time
complexity because it depends on the search space of range
limited Dijktra's algorithm. But, it is likely to be small if the
range used is an average of the shortest path distances
within some small hop distance [16].

III. EXPERIMENT

We will compare our proposed algorithms with BC, k-
BC, e-BC and a-BC in terms of running time and quality of
the produced results. Distance limits 𝑘 ∈ {3, 4} are con-
sidered for unweighted graphs. Outputs of all the algo-
rithms are normalized BC values. We chose 𝑙𝑜𝑔ଷ𝑛 sample
size for e-BC algorithm. The parameters of a-BC based al-
gorithms are 𝜖 = 0.005 and 𝛿 = 0.1 for the following
reasons. First parameter 𝜖 is chosen for accuracy for large
graphs since they are normalized by 𝑛(𝑛 − 1) factor. Sec-
ond parameter 𝛿 is commonly chosen as 0.1 for precision
[14]. These experiments are done on the machine with In-
tel(R) Core(TM) i7-7700 CPU @ 3.60 GHz CPU and 8 GB
of RAM using Networkit [17] library and Python 3.10. We
ran random algorithms 5 times and averaged their results.
Proposed algorithms are implemented in the fork of Net-
workit library (Modified NetworKit library can be down-
loaded from https://github.com/denduuyum/networkit.git).
Python script used in this work can be found here (https://
github.com/dendu uyum/Estimated-k-betweenness.git).

3.1. Dataset

Dataset consists of 7 real world networks (Table 1). We
took most difficult (largest) networks used in [13] i.e. US
patent network, co-paper Citeseer network, co-paper
DBLP network and world wide web graph in addition to
other well-known networks such as Twitter and Amazon co-
purchasing network [18]. In order to see the performance of
distance limited versions on a weighted graph, days.net net-
work used in [19] is taken.

Twitter is a social network created by crawling from pub-
lic resources where nodes are profiles and circles in Twitter
platform and edges represent friendship and follow status
among the vertices. Amazon is a copurchasing network on
their online shopping platform where vertices represent

Algorithm 2: ak-BC(𝐺 = (𝑉, 𝐸), 𝜖, 𝛿, 𝑘)

1: 𝑣𝑑 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺)
2: 𝑟 = 1𝑒ଶ ∙ (⌊𝑙𝑜𝑔2(𝑣𝑑 − 2)⌋ + 1 + 𝑙𝑜𝑔(1𝛿))

3: 𝑓𝑜𝑟 ∀𝑢 ∈ 𝑉
4: 𝐵𝐶[𝑢] ← 0
5: 𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑟
6: 𝑢, 𝑣 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 2 𝑛𝑜𝑑𝑒𝑠 𝑓𝑟𝑜𝑚 𝑉
7: 𝜎, 𝑝𝑟𝑒𝑑 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ_𝑘_𝑆𝑆𝑆𝑃(𝐺, 𝑘, 𝑢)
8: 𝑡 ← 𝑣
9: 𝑤ℎ𝑖𝑙𝑒 𝑡 ≠ 𝑢
10: 𝑊 ← ∅
11: 𝑆 ← ∅
12: 𝑓𝑜𝑟 ∀𝑧 ∈ 𝑝𝑟𝑒𝑑[𝑡]
13: 𝑆 ← 𝑆 ∪ {𝑧}
14: 𝑊 ← 𝑊 ∪ {𝜎[𝑧]𝜎[𝑡]}

15: 𝑧 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐ℎ𝑜𝑖𝑐𝑒 𝑧௝ ∈ 𝑆

 𝑤𝑖𝑡ℎ 𝑤௝ ∈ 𝑊 𝑤𝑒𝑖𝑔ℎ𝑡

16: 𝑡 ← 𝑧
17: 𝑖𝑓 𝑧 ≠ 𝑢
18: 𝑏𝑐[𝑧] = 𝑏𝑐[𝑧] + 1/𝑟

Journal of Multimedia Information System VOL. 11, NO. 3, September 2024 (pp. 185-192): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2024.11.3.185

189

products and an edge between two vertices means that they
are bought together frequently. US patent network is largest
among the others where vertex is a patent and there is an
edge between two patents if the one cites the other. Co-pa-
per Citeseer and co-paper DBLP networks are based on the
data generated from Citeseer and DBLP networks respec-
tively where nodes are papers and an edge between them
means that two papers share an author. World wide web
graph is formed by link connection between web sites.
Days.net, called Reuters terror news network (downloaded
from Pajek datasets), contains word relation data collected
from Reuters news for 66 consecutive days after tragic Sep-
tember 11 incident. The vertices are words and weighted
edges between them mean that two words were present in
one sentence while weight represents their frequency. We
converted every 𝑤௜ edge weight to 𝑊௠௔௫ + 1 − 𝑤௜
where 𝑊௠௔௫ = max(𝑤_𝑖) so that shortest paths pass
through words which used most frequently. BC gives inter-
esting information and used for data analysis. It is able to
detect influential people in circles on social and collabora-
tion networks such as Twitter. For Amazon network, BC is
used to predict sales-rank of the products [22].

3.2. Running Time

We run a single thread instance of each algorithm on
Twitter and Amazon datasets and measured their running
times in seconds using perf_counter method of Python time
module. Their running times are compared against running

time of BC to see relative speed gain empirically. Running
time of the algorithms are shown in Table 2. Ratio column
shows relative speed gain which is the running time of BC
divided by the running time of current algorithm. We con-
sidered only Twitter and Amazon network for simplicity (It
takes weeks to calculate exact betweenness of larger
graphs). BC is the slowest of them − 1.9 hours and 18.3
hours for Twitter and Amazon networks respectively be-
cause it finds exact BC values. E-BC runs 22 and 48.7 times
faster whereas a-BC runs 0.7 and 2.4 times faster than BC.
A-BC runs slower than exact BC on Twitter showing that
its sample size was bigger than number of nodes. Distance
limited algorithms run faster on larger and sparser graph i.e
Amazon. k-BC was faster than e-BC and a-BC on Amazon.
Ek-BC (k=3) gained 18 and 28.7 times faster compared to
k-BC on both networks.

The algorithms show predictable behavior when effect of
distance limit on running time is studied (Fig. 2). We used
Twitter network whose diameter is 7. In the figure, running
time of BC, e-BC and a-BC are constant as they are not dis-
tance limited. But we can see their running time differences
(gaps). Running time of distance limited versions are clos-
ing in to their original algorithms at 𝑘 = 4 meaning that 𝑘 = 4 is already sufficient and covers most of the network.
Since then, running time is around the same up and down

Table 1. Dataset properties.

Dataset N m Avg.deg Density

Twitter 81,306 1,342,310 33.0 16.5
Amazon 334,863 925,871 5.5 2.8

US patent 3,774,769 16,518,947 8.8 4.4
Co-papers Citeseer 434,102 16,036,720 73.9 36.9
Co-papers DBLP 540,487 15,245,729 56.4 28.2
World wide web 325,730 779,327 4.7 2.4

Days.net (weighted) 13,332 243,447 22.2 18.3

Table 2. Running time in seconds. Ratio column represents running time of BC to running time of current BC ratio.

BC e-BC a-BC

k-BC

k=3 k=4

Time Time Ratio Time Ratio Time Ratio Time Ratio

Twitter 7,163.1 326.2 22.0 9,568.7 0.7 1,674.0 4.3 5,656.7 1.3
Amazon 65,914.7 1,353.8 48.7 27,307.1 2.4 888.8 74.2 1481.6 44.5

 BC
ek-BC ak-BC

k=3 k=4 k=3 k=4

Twitter 7,163.1 89.8 79.8 284.7 25.2 1,737.2 4.1 5,522.9 1.3
Amazon 65,914.7 30.9 2,132.6 29.9 2,205.0 593.1 111.1 664.7 99.2

Fig. 2. Running time over k distance limit.

Estimated Distance Limited Betweenness Centrality Based on Estimated Betweenness and Approximate Betweenness Algorithms

190

little bit to their original running time. Running time fluc-
tuation shows their random sampling nature. Number of
paths in sampled nodes are larger than average and some-
times they are fewer. As we can see even at 𝑘 = 7 which
is the diameter, the running time of ek-BC and ak-BC are
faster than their original algorithms. When 𝑘 increases,
running time of distance limited algorithms are almost the
same as their original versions.

Relative speed-ups gained by using ek-BC and ak-BC
compared to k-BC are shown in Table 3. Ek-BC was 17.9 − 438.9 fold faster than k-BC. Both versions run
faster when 𝑘 = 3 as predicted and speed-up increases as
network grows larger. Speed-up gained by ak-BC is small
compared to ek-BC. It runs 1 − 24.4 times faster than k-
BC. On the other hand, ek-BC was at least 13 times faster
than others. Estimated versions are faster because they have
the best of the two worlds – distance limitation and estima-
tion. Estimated algorithm halts when the distance limit is
reached making the inner loop of the algorithms run faster
while not causing any overhead.

3.3. Solution Quality

Solution quality of proposed algorithms is studied in this
section. BC values produced by e-BC, a-BC, ek-BC and ak-
BC are compared against outputs of BC and k-BC using
spearman's correlation coefficient and Euclidean distance
to see the solution compatibility with the original algo-
rithms. Normalized betweenness values of 𝒏 nodes are
converted into 𝒏-dimensional vector in order to calculate
euclidean distance. Also, we measured how many of top
ranking 𝑳 nodes of these algorithms are contained in the
set containing top ranking 𝟐𝑳 nodes of BC. Sizes of 𝑳
are 10 and √𝒏 in this experiment.

Euclidean distances of all the algorithms to BC and k-BC
are calculated on Twitter network using different 𝒌 dis-
tances (Fig. 3). All the algorithms followed predicted be-
havior meaning that their solution quality is converging to
their original algorithms when 𝒌 increases. In Figure 2a,
k-BC's euclidean distance is 0 at 𝒌 = 𝟕 which means there

is no difference between k-BC and BC at this point. Be-
cause diameter of the graph is 7 and k-BC is distanced ver-
sion of BC. Euclidean distances of e-BC and a-BC are plot-
ted as horizontal lines since they don't depend on 𝒌 param-
eter and these distances represent their algorithmic limit.
Their distance limited versions were started far from their
original version and gets closer as 𝒌 increases. By the time 𝒌 = 𝟔, ek-BC and ak-BC produce the same output as e-BC
and a-BC. It is seen from the distance that ak-BC and aBC
perform little better than e-BC and ek-BC on this dataset.
The fact that distance limited versions are distanced a bit
from BC at the beginning could mean that they represent
different information at the beginning. This information
fades away and they become like BC as 𝒌 increases.

Fig. 3(b) shows Euclidean distance to k-BC. E-BC and
a-BC look like getting closer to k-BC though they are not
distance limited. This pattern is observed because k-BC
changes to be closer to BC which is what they are approxi-
mate. On the other hand, ek-BC and ak-BC start very close
to k-BC and get closer to their respective algorithms as 𝒌
increases. This suggests that distance limited versions of the
estimated algorithms are able to approximate k-BC. As 𝒌
increases, they get close to their algorithmic limit which is
estimating BC getting little distanced from k-BC while k-
BC approaches to BC.

Solution closeness of ek-BC and ak-BC to k-BC is
shown in Tables 4 and Table 5 using 4 different methods
mentioned before. Tables show that spearman's correlation
coefficient is high for ek-BC for both 𝒌 = 𝟑 and 𝒌 = 𝟒.
This means that its ranking is very close to the ranking of
k-BC. Top-𝑳 columns confirm this result as we can see top
10 nodes of ek-BC are all in top-20 nodes of k-BC except
Twitter and Amazon at 𝒌 = 𝟑 where it misses only one
node. When 𝑳 = √𝒏, ranking looks little bit off from k-BC
but ek-BC was able to find most of them (𝒌 = 𝟑). This
number improves when 𝒌 = 𝟒 getting closer to k-BC
which is our objective. For ak-BC, spearman's correlation
is low but it ranks top-10 and top-√𝒏 well for Twitter, co-
paper Citeseers, co-paper DBLP and world wide web

Table 3. Running time of k-BC to running time of estimated dis-
tance limited algorithms ratio.

Dataset
ek-BC ak-BC

k=3 k=4 k=3 k=4

Twitter 17.9 19.7 0.9 1.0
Amazon 31.8 49.4 2.0 2.2

US patent 438.9 379.5 24.2 24.4
Co-papers citeseer 42.5 23.6 2.9 3.6
Co-papers DBLP 49.1 30.6 3.7 4.9
World wide web 57.2 44.7 2.2 2.3

 (a) (b)

Fig. 3. quality change over k distance limit. Figure (a) shows Eu-
clidean distance between BC and comparing algorithms. Figure
(b) shows Euclidean distance between k-BC and comparing algo-
rithms.

Journal of Multimedia Information System VOL. 11, NO. 3, September 2024 (pp. 185-192): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2024.11.3.185

191

graphs. It probably needs more sampling to work through
larger graphs. For Euclidean distance, ek-BC is better than
ak-BC. We can observe that Euclidean distance grows
larger and node ranking gets better as 𝒌 increases due to
the effect we observed in Fig. 3.

3.4. Weighted Network

Centering Resonance Analysis used betweenness cen-
trality [20]. We used our proposed algorithms on Reuters
dataset. Then, we run BC, k-BC, ek-BC and ak-BC on the
data and captured top 6 words with highest BC value (Table
6). In this case, range limited algorithms (k=1,100 is used)
produced reasonable answers when correct range is given
since increasing range means that more sentences are trav-
ersed making it difficult to grasp the main theme of the
news. k-BC is able to find all the attack sites and cities

while BC mixes up cities with uninformative word like peo-
ple. Proposed ek-BC and ak-BC algorithms produced exact
same results as k-BC in much shorter time.

IV. CONCLUSION

Distance limited versions e-BC [13] and a-BC [14] are
designed and experimented. Both algorithms show conver-
gence and compatibility with the result of k-bounded-be-
tweenness. Therefore, they can be used in estimating k-BC
in real world applications to cut running time drastically.
Experimental results show that distance limited between-
ness values can be calculated 18−439 times faster by using
estimated algorithms. Distance limited version of e-BC
shows better performance than the one based on a-BC both
in running time and solution quality.

REFERENCES

[1] A. Sevtsuk, "Estimating pedestrian flows on street net-
works: Revisiting the betweenness index," Journal of
the American Planning Associatio, vol. 87, no. 4, pp.
512-526, 2021.

[2] V. V. Makarov, M. O. Zhuravlev, A. E. Runnova, P. Prot-
asov, V. A. Maksimenko, and N. S. Frolov, et al., "Be-
tweenness centrality in multiplex brain network during
mental task evaluation," Physical Review E, vol. 98, no.

Table 6. words with highest betweenness by each algorithm.

BC k-BC ek-BC ak-BC

United_States United_States United_States Attack
Attack Attack Attack United_States
People New_York New_York New_York
Taliban Washington Washington Pentagon

New_York Pentagon Pentagon Washington
Pres_bush World Trade Ctr World Trade Ctr World Trade Ctr

Table 4. Algorithms are compared against k-BC (k=3). Columns represent Spearman’s correlation, Euclidean distance, top-10 and top-
√n analysis respectively.

 ek-BC ak-BC

 SP Euc 10 √𝑛 SP Euc 10 √𝑛

Twitter 1 1.82E-03 10.0/10 285.0/285 0.68 1.77E-03 10.0/10 285.0/285
Amazon 0.89 5.14E-06 9.4/10 521.0/578 0.07 6.81E-05 3.0/10 59.0/578

US patent 0.81 1.43E-06 9.0/10 1,149.8/1,942 0.02 5.91E-05 0.2/10 11.6/1942
Co-papers Citeseer 0.99 4.94E-05 10.0/10 650.2/658 0.27 3.47E-04 7.6/10 281.2/658
Co-papers DBLP 0.99 8.09E-05 10.0/10 729.4/735 0.31 4.72E-04 10.0/10 388.8/735
World wide web 0.91 2.63E-04 10.0/10 453.8/570 0.17 2.69E-04 9.6/10 336.2/570

Table 5. Algorithms are compared against k-BC (k=4). Columns represent Spearman’s correlation, Euclidean distance, top-10 and top-
√n analysis respectively.

 ek-BC ak-BC
 SP Euc 10 √𝑛 SP Euc 10 √𝑛

Twitter 1 4.79E-03 10.0/10 285.0/285 0.84 3.59E-03 10.0/10 285.0/285
Amazon 0.97 1.76E-05 10.0/10 564.0/578 0.15 1.71E-04 6.6/10 197.2/578

US patent 0.97 1.00E-05 10.0/10 1,552.0/1,942 0.06 2.19E-04 2.6/10 138.6/1,942
Co-papers Citeseer 1 2.28E-04 10.0/10 657.2/658 0.53 1.03E-03 9.8/10 561.2/658
Co-papers DBLP 1 4.14E-04 10.0/10 734.0/735 0.62 1.51E-03 10.0/10 669.6/735
World wide web 0.94 4.16E-04 10.0/10 516.4/570 0.31 6.79E-04 10.0/10 492.6/570

Estimated Distance Limited Betweenness Centrality Based on Estimated Betweenness and Approximate Betweenness Algorithms

192

6, p. 062413, 2018.
[3] M. Zhou, H. Jin, Q. Wu, H. Xie, and Q. Han, "Between-

ness centrality-based community adaptive network rep-
resentation for link prediction," Applied Intelligence,
vol. 52, no. 4, pp. 3545-3558, 2022.

[4] C. Morselli, "Assessing vulnerable and strategic posi-
tions in a criminal network," Journal of Contemporary
Criminal Justice, vol. 26, no. 4, pp. 382-392, 2010.

[5] S. P. Borgatti and M. G. Everett. "A graph-theoretic per-
spective on centrality," Social Networks, vol. 28, no. 4
pp. 466-484, 2006.

[6] U. Brandes, "On variants of shortest-path betweenness
centrality and their generic computation," Social Net-
works, vol. 30, no. 2, pp. 136-145, 2008.

[7] J. Pfeffer and K. M. Carley, "k-centralities: Local ap-
proximations of global measures based on shortest
paths," in Proceedings of the 21st International Confer-
ence on World Wide Web, 2012, pp. 899-914.

[8] N. Kourtellis, T. Alahakoon, R. Simha, A. Iamnitchi,
and R. Tripathi, "Identifying high betweenness central-
ity nodes in large social networks," Social Network
Analysis and Mining, vol. 3, pp. 899-914, 2013.

[9] M. Ercsey-Ravasz, R. N. Lichtenwalter, N. V. Chawla,
and Z. Toroczkai, "Range-limited centrality measures in
complex networks," Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics, vol. 85, no. 6, p.
066103, 2012.

[10] U. Brandes, "A faster algorithm for betweenness cen-
trality," Journal of Mathematical Sociology, vol. 25,
no. 2, pp. 163-177, 2001.

[11] E. W. Dijkstra, "A note on two problems in connexion
with graphs," Edsger Wybe Dijkstra: His Life, Work,
and Legacy, pp. 287-290, 2022.

[12] U. Brandes and C. Pich, "Centrality estimation in large
networks," International Journal of Bifurcation and
Chaos, vol. 17, no. 7, pp. 2303-2318, 2007.

[13] R. Geisberger, P. Sanders, and D. Schultes, "Better ap-
proximation of betweenness centrality," in 2008 Pro-
ceedings of the Tenth Workshop on Algorithm Engi-
neering and Experiments (ALENEX), Society for In-
dustrial and Applied Mathematics, 2008.

[14] M. Riondato and E. M. Kornaropoulos, "Fast approxi-
mation of betweenness centrality through sampling,"
in Proceedings of the 7th ACM International Confer-
ence on Web Search and Data Mining, 2014.

[15] C. Cousins, C. Wohlgemuth, and M. Riondato, "BA-
VARIAN: Betweenness centrality approximation with
variance-aware Rademacher averages," ACM Trans-
actions on Knowledge Discovery from Data, vol. 17,
no. 6, pp. 1-47, 2023.

[16] D. J. Watts, "Networks, dynamics, and the small-world
phenomenon," American Journal of Sociology, vol.

105, no. 2, pp. 493-527, 1999.
[17] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, "Net-

worKit: A tool suite for large-scale complex network
analysis," Network Science, vol. 4, no. 4, pp. 508-530,
2016.

[18] L. Jure, SNAP datasets: Stanford large network dataset
collection. Dec. 2021. http://snap.stanford.edu/data.

[19] V. Batagelj and A. Mrvar, "Density based approaches
to network analysis," Analysis of Reuters Terror News
Network, University of Ljubljana, Slovenia, 2001.

[20] S. R. Corman, T. Kuhn, R. D. McPhee, and K. J.
Dooley, "Studying complex discursive systems: cen-
tering resonance analysis of communication," Human
Communication Research, vol. 28, no. 2, pp. 157-206,
2002.

[21] G. U. Alozie, A. Arulselvan, K. Akartunalı, and E. L.
Jr. Pasiliao, "Efficient methods for the distance-based
critical node detection problem in complex networks,"
Computers & Operations Research, vol. 131, p.
105254, 2021.

[22] U. Prasad, N. Kumari, N. Ganguly, and A. Mukherjee,
"Analysis of the co-purchase network of products to
predict Amazon sales-rank," in Big Data Analytics: 5th
International Conference, BDA 2017, Hyderabad,
Dec. 2017, vol. 5, pp. 197-214.

AUTHORS

Gantulga Gombojav obtained B.Sc com-
puter science and M.S. Information tech-
nology from University of Madras, India
and National University of Mongolia re-
spectively in 2012 and 2016. He has been
teaching algorithmic courses in National
University of Mongolia since 2016. Cur-
rently, he is a Ph.D. student at the Unver-
sity of Mongolia. His research interests in-

clude network analysis and algorithm design.

Dalaijargal Purevsuren received his
Ph.D in Computer Science from Harbin
Institute of Technology, China. His re-
search interests include randomized algo-
rithms, network analysis, and data mining.

