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I. INTRODUCTION  

In digital pathology, accurate segmentation of nuclei in 
histological images is vital for cancer diagnosis and prog-
nosis [1]. Segmentation of nuclei enables detailed examina-
tion of cellular structures and behaviors, such as analyzing 
cell cycles, mutations, and the morphology of cancerous tis-
sues [2]. These analyses are essential for identifying cancer 
types, evaluating severity, and guiding treatment plans [3]. 
Tissue biopsy-based diagnostics relies heavily on this type 
of segmentation and remains the gold standard for cancer 
detection worldwide [4]. Given the volume and complexity 
of biopsy samples, automated and accurate segmentation 
methods have become critical to aid pathologists and 
streamline diagnostic workflows.  

Nuclei segmentation is a fundamental step in quantitative 
histopathology that enables the analysis of cellular mor-
phology, spatial distribution, and tissue architecture [4]. Ac-
curate segmentation is crucial for diagnosing various dis-
eases, including cancer, where nuclear features are key in-
dicators of malignancy [5]. Traditional manual annotation 

is time-consuming and subject to inter-observer variability 
[6], highlighting the need for automated solutions.  

Task-specific models, such as the U-Net family of archi-
tectures, have emerged as the benchmark for medical image 
segmentation [5]. U-Net [6] variants are effective in captur-
ing the fine-grained details that are necessary for high-pre-
cision cell segmentation. They are effective due to their en-
coder-decoder structure and skip connections which help 
preserve contextual information. Despite their success, 
task-specific models typically require large amounts of la-
beled training data and often struggle to generalize across 
different staining variations and imaging modalities that are 
commonly encountered in histopathological datasets [7]. 
Moreover, these models tend to focus on localized features 
and may not fully capture the broader context of tissue 
structures, which is crucial for understanding complex cell 
and tissue interactions [8-9]. Moreover, challenges such as 
heterogeneity in staining, presence of artifacts, and varia-
bility in nuclear morphology necessitate more robust ap-
proaches. 

To address the above limitations, recent research has ex-
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plored the potential of foundation models, such as the Seg-
ment Anything Model (SAM) [10], which are trained on 
vast and diverse datasets. Foundation models excel in cap-
turing global contextual features and generalize well across 
various visual domains. However, when applied to histol-
ogy images, foundational models often lack the pixel-level 
precision needed for accurate pathological analysis, espe-
cially in segmenting small, densely packed nuclei [7]. Our 
study aims to address these challenges by integrating global 
contextual information from foundation models with the 
precision of task-specific models. 

In this paper, we propose a novel approach that integrates 
the strengths of task-specific and foundation models to en-
hance nuclei segmentation in histology images. We enhance 
the U-Net3+ architecture [11] by introducing an adaptive 
feature selection mechanism, which we call, 𝑒 U-Net3+. 
Additionally, we propose an Enhanced Fusion Block (EFB), 
which dynamically fuses the global contextual knowledge 
from foundation models with the detailed local representa-
tions from task-specific models using cross-attention and 
gated squeeze-and-excitation techniques [12]. Our pro-
posed framework enables the model to leverage both global 
context and local precision, addressing the challenges 
posed by complex histological images. 

Our approach demonstrates significant improvements in 
segmentation performance, achieving a 12% and 17.22% 
increase in Dice score and mIoU, respectively, on the Cry-
oNuSeg dataset [13], a 15.55% and 16.77% increase on the 
NuInsSeg dataset [14], and a 9% improvement on both met-
rics for the CoNIC dataset [15]. By effectively merging 
task-specific models with foundation models, we set a new 
standard for state-of-the-art nuclei segmentation in digital 
pathology. The main contributions of this paper are as fol-
lows: 

 
‧ Integration of Task-Specific and Foundation Mod-
els: We propose a framework that effectively com-
bines the fine-grained feature extraction capabilities of 
task-specific models with the global contextual under-
standing of foundation models. Our Enhanced Fusion 
Block (EFB) dynamically fuses local and global fea-
tures through cross-attention and gated squeeze-and-
excitation techniques. 

‧ Adaptive Feature Selection using GLUs: We intro-
duce an adaptive feature selection mechanism using 
Gated Linear Units (GLUs) within the U-Net3+ archi-
tecture to create 𝑒U-Net3+, which enhances local fea-
ture extraction and improves segmentation accuracy. 

‧ State-of-the-Art Nuclei Segmentation Results: By 
setting new benchmarks on the CryoNuSeg, NuInsSeg, 
and CoNIC datasets, our work advances the field of 
nuclei segmentation in digital pathology. 

Ⅱ. RELATED WORKS 

Nuclei segmentation in histopathological images has 
witnessed significant advances with the advent of deep 
learning, particularly convolutional neural networks (CNNs) 
[6]. Among CNN-based architectures, U-Net has become a 
seminal model for medical image segmentation due to its 
symmetrical encoder-decoder structure and the use of skip 
connections, which preserve spatial details while extracting 
higher-level features [16]. Variants of U-Net [16-19] have 
demonstrated remarkable success in various biomedical 
tasks, including nuclei segmentation, by improving multi-
scale feature extraction and incorporating attention mecha-
nisms. 

Recent approaches have focused on hybrid models that 
combine U-Net with other architectures to leverage the 
strengths of both [20]. These hybrid approaches address the 
limitations of U-Net in handling complex visual features 
like overlapping nuclei, irregular shapes, and varying sizes. 
For instance, ASPPU-Net [21] integrates Atrous Spatial 
Pyramid Pooling (ASPP) with U-Net, enhancing its ability 
to capture multi-scale contextual information. Similarly, 
Hover-Net [22] extends U-Net with residual connections 
and dense blocks to improve feature reuse and boundary 
precision, particularly in dense cell regions. Another nota-
ble advancement is the Sharp U-Net models [23], which 
aim to increase performance by minimizing low-frequency 
noise introduced during down-sampling and up-sampling 
layers. Attention mechanisms have also become a popular 
enhancement to U-Net variants. DEAU [24] introduces an 
Attention Encoding Path (AEP) that runs parallel to the U-
Net’s traditional encoding path, refining feature extraction 
by using attention maps that prioritize diagnostically signif-
icant regions. Similarly, methods incorporating self-atten-
tion or cross-attention layers have shown improved nuclei 
detection and segmentation accuracy by capturing long-
range dependencies and suppressing irrelevant background 
information. DDU-Net [25] leverages dual decoders to han-
dle both nuclear and cytoplasmic regions, enhancing seg-
mentation performance on histopathological images where 
overlapping structures are prevalent. U-Net3+ [11], on the 
other hand, focuses on incorporating full-scale skip connec-
tions and deep supervision to better fuse multi-scale fea-
tures. To benchmark our proposed model, DDU-Net and U-
Net3+ were selected as baseline models as they previously 
obtained state-of-the-art results. Both architectures are 
well-regarded for their effectiveness in medical image seg-
mentation. While U-Net3+ excels in fusing full-scale fea-
ture maps and providing deep supervision, DDU-Net's 
dual-decoder design allows it to effectively differentiate be-
tween different cellular structures, making these models 
strong candidates for comparison.  
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Additionally, some studies have employed wavelet-
based channel attention modules to capture more global 
context within U-Net-based models [26]. By decomposing 
feature maps into different frequency components using 
wavelet transforms can help these methods effectively fo-
cus on salient features at various scales and enhance seg-
mentation performance by integrating both local and global 
information. Post-processing techniques have also been ex-
plored to improve segmentation results. Studies like [27] 
have used morphological operations to refine segmentation 
masks. Semi-supervised [28-30] and unsupervised learning 
approaches [31-34] have also been investigated for nuclei 
segmentation, aiming to reduce the reliance on large 
amounts of annotated data. Methods such as [35,36] utilize 
generative adversarial networks (GANs) or self-supervised 
learning techniques to learn representations from unlabeled 
data. However, these methods often struggle to achieve 
high performance due to the complexity and variability of 
histopathological images, and the lack of explicit guidance 
from labeled examples limits their effectiveness compared 
to fully supervised approaches. 

Another trend is the integration of foundation models 
such as Vision Transformers (ViTs) [37] that are pre-
trained on vast and diverse datasets. Foundation models of-
fer strong generalization across various domains by learn-
ing rich, global contextual features, as demonstrated by the 
Segment Anything Model (SAM) [10]. While these models 
excel at capturing global context, their application in medi-
cal image segmentation, particularly nuclei segmentation, 
requires finetuning or parameter-based optimizations. SAM 
is trained on natural images that lacks the fine-grained de-
tail necessary for precise nuclei boundary detection, mak-
ing it necessary to finetune or adapt it to task-specific de-
mand like nuclei segmentation. There have been recent de-
velopments that include MedSAM [38] which is specifi-
cally trained on medical images. But even then, it is far 
from reaching the performance level of task-specific mod-
els semantic segmentation models. 

Our work builds on these developments by proposing a 
novel hybrid model that combines the global context aware-

ness of SAM with the fine-grained feature extraction capa-
bilities of U-Net. By incorporating GLU and GFB, our ap-
proach dynamically and effectively fuses local and global 
features, allowing the model to address the challenges of 
nuclei segmentation in complex histopathological images. 
While many previous models focus on either task-specific 
or general foundation models, our approach effectively 
combines both to achieve state-of-the-art performance, as 
demonstrated by our significant improvements in Dice 
scores across multiple datasets. 

 

Ⅲ. METHODS 

The overall pipeline of the proposed approach is depicted 
in Fig. 1. Our methodology focuses on enhancing task-spe-
cific nuclei segmentation by leveraging the combined 
strengths of a task-specific model and a foundation model. 
The task-specific model is an enhanced version of U-Net3+ 
(referred to as 𝑒U-Net3+), optimized for fine-grained fea-
ture extraction. In parallel, a pre-trained Segment Anything 
Model (SAM) provides global contextual information. 
These local and global features are fused through our pro-
posed Enhanced Fusion Block (EFB), which combines 
Gated Linear Units (GLUs) in a squeeze-and-excitation 
mechanism followed by a cross-attention block. This en-
sures effective integration of both global and local repre-
sentations for enhanced segmentation performance.  

  
3.1. Task Specific Model 

The U-Net architecture has emerged as a fundamental 
framework in medical image segmentation due to its unique 
ability to balance both high-level semantic information and 
low-level spatial details [20]. Over time, numerous variants 
of the U-Net architecture have been proposed to address 
specific challenges in medical image segmentation. Most 
variations of U-Net introduce enhancements to tackle par-
ticular issues such as multi-scale feature extraction and 
deeper supervision. From among the U-Net based models, 
U-Net3+ introduces full scale skip connections and allows 

 
Fig. 1. Architecture of the proposed model. The S&E is squeeze and excitation block, GLU is gated linear unit block and X-attention is 
cross attention block. 
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features from all levels of the encoder to be directly con-
nected to the corresponding layers in the decoder. This deep 
supervision improves gradient flow during training and fa-
cilitates better feature learning by incorporating multiple 
output layers. While U-Net3+ provides a strong foundation 
for segmenting histopathological images, traditional activa-
tion functions such as ReLU [39] apply uniform transfor-
mations to all features and overlook the nuances in densely 
packed or morphologically diverse regions. To address this 
limitation, we enhance U-Net3+ by GLUs, allowing for 
adaptive feature selection. 

GLUs split the input into two streams: one undergoes a 
linear transformation, while the other passes through a sig-
moid activation function. The sigmoid activation serves as 
a gate, modulating the flow of information based on the rel-
evance of each feature to the segmentation task. This mech-
anism allows the network to selectively focus on diagnosti-
cally significant regions, such as densely packed nuclei, 
while ignoring less relevant features. The GLU operation is 
defined as: 

  𝐺𝐿𝑈ሺ𝑥ሻ ൌ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑊௔ ⋅ 𝑥 ൅ 𝑏௔ሻ ⊙ ሺ𝑊௟ ⋅ 𝑏௟ሻ, (1)
  

where, ⊙  denotes element-wise multiplication, 𝑊௔, 𝑏௔ 
represent the weights and biases for gating mechanism, and 𝑊௟, 𝑏௟ represent the weights and biases for the linear trans-
formation. This enhancement ensures that the task-specific 
model not only captures multi-scale features but also fine-
tunes its focus towards the most significant regions in the 
image. 

 
3.2. Foundational Model 

The Segment Anything Model (SAM) [10] is used as a 
foundation model. SAM is pre-trained on a vast dataset 
comprising over 11 million images and one billion masks. 
Although SAM is not specialized for medical images, its 
robust ability to capture high-order global context across 
diverse visual domains makes it a valuable asset for guiding 
nuclei segmentation. SAM's ability to identify global con-
textual relationships aids the task-specific model in under-
standing broader tissue structures, which is particularly 
helpful when analyzing complex histological images. 

In our proposed framework, we use SAM’s Base model 
checkpoint (91M parameters) – ViT B, as it provides a more 
abstract and ambiguous representation of the input image, 
which complements the detailed focus of eU-Net3+ as can 
be seen in Fig. 2. This ambiguity allows the task-specific 
model to fine-tune its decisions, particularly in differentiat-
ing nuclei from surrounding regions. Visualizing SAM’s 
encodings through Principal Component Analysis (PCA), 
we observe that simpler SAM representations produced by 
the base ViT enable a better fusion with the local features 
captured by eU-Net3+. 

  

3.3. X-Gated Fusion Block  
A key challenge when combining feature representations 

from task-specific and foundation models is the potential 
for conflicting or redundant information. Simple concate-
nation of features often results in suboptimal performance 
due to this misalignment [40]. To address this, we introduce 
Enhanced Fusion Block (EFB) to effectively integrate the 
global context with local task-specific features.  

The EFB consists of three main components: a Gated 
Squeeze-and-Excitation block, GLU block and a Cross-At-
tention Block. The squeeze-and-excitation block starts by 
performing adaptive average pooling on the concatenated 
features from SAM and 𝑒U-Net3+. This compresses spa-
tial dimensions to focus on global information from each 
channel. The gated mechanism, implemented using GLUs, 
selectively allows important features to flow through, em-
phasizing only the most relevant global and local features. 
The cross-attention block operates on the gated features by 
treating them as queries, keys, and values in a standard at-
tention operation. This mechanism enhances the model's 
ability to highlight important features, suppress irrelevant 
information, and increase contextual awareness. 

  

Ⅳ. EXPERIMENTS AND RESULTS 

4.1. Datasets 
We used three publicly available histopathological d

atasets that contained variability in staining techniques,
 and tissue morphology. 

 
Fig. 2. Displays the representations of the encoded image of various SAM models. ViT B denotes SAM with ViT Base image weights, 
ViT L for Large image weights and H for Huge image weights. MedSAM is the adapted variant of SAM trained on medical images. The
red regions denote the nuclei regions and green regions denote membrane. It is seen that ViT B seem to have more potential nuclei regions 
compared to other frozen models. 
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‧ CryoNuSeg [13]: This dataset consists of 30 high-res-
olution images obtained using cryo-sectioning tech-
niques. It is known for its variability in nuclear mor-
phology and presents challenges related to segmenta-
tion accuracy due to its complex staining and tissue 
structures. 

‧ NuInsSeg [14]: Comprising 665 image patches, NuIns-
Seg is a challenging dataset characterized by diverse tis-
sue types and staining methods. The dataset includes 
densely packed nuclei and complex tissue structures, 
making it an ideal test bed for assessing segmentation 
performance on intricate regions. 

‧ CoNIC [15]: The CoNIC dataset includes 4,981 im-
ages and presents one of the largest and most complex 
datasets used for nuclei segmentation. It contains mul-
tiple tissue types and wide variations in nuclear shapes, 
providing a robust benchmark for evaluating generali-
zation across diverse histological samples. 

 
4.2. Experiment Setup 

Our experiments were conducted using the PyTorch 
framework on a system equipped with an NVIDIA RTX 
A6000 GPU. To ensure consistency and standardization, all 
images were resized to a resolution of 256×256 pixels. The 
training process spanned 50 epochs, with an initial learning 
rate of 1×10⁻⁴ and a batch size of 16. We employed the 
Adam optimizer [41], which is well-suited for segmentation 
tasks, and incorporated a dropout rate of 0.3 to prevent 
overfitting. 

All the images were preprocessed by using stain normal-
ization as described in [42] and then augmentations were 
performed. We applied a combination of photometric and 
geometric augmentations as described in [43]. Geometric 
augmentations such as rotations, scaling, flips were per-
formed to obtain samples from different perspectives and 
scales. Additionally, elastic deformations that mimic the 
natural deformations in biological tissues were performed 
that helped in enhancing the model’s ability to handle non-
rigid transformations and complex variations. Photometric 
augmentations like Gamma and intensity level transfor-
mations along with contrast limited adaptive histogram 
equalization were performed. These augmentations aimed 
to increase the diversity of the training set and help the 
model generalize better to unseen data. 

For the loss function, we used a weighted combination 
of Dice loss [43] and focal loss [45], each contributing 
equally to the overall loss function. Dice loss was chosen 
for its effectiveness in handling imbalanced datasets, par-
ticularly in scenarios where nuclei occupy a small portion 
of the image. Focal loss further helps by focusing on hard-
to-segment regions, ensuring that rare and challenging nu-
clei instances are not overlooked during training. 

To evaluate the segmentation performance, we used the 
Dice coefficient and mean Intersection over Union (mIoU), 
both of which are standard metrics in medical image seg-
mentation tasks. These metrics provide a robust evaluation 
of the overlap between the predicted segmentation masks 
and the ground truth, with higher values indicating better 
segmentation quality. 

  
4.3. Results 

The experimental results are summarized in Table 1. It 
demonstrates that integrating SAM's global contextual fea-
tures significantly improves the performance of the task-
specific eU-Net3+ model across all datasets. 

  
‧ CryoNuSeg: Our model achieved a 12% increase in 
Dice score and a 17.22% increase in mIoU compared 
to baseline models. The inclusion of SAM helped mit-
igate the effects of freezing artifacts by providing ad-
ditional context to differentiate nuclei from artifacts. 

‧ NuInsSeg: We observed over 15% improvement in 
Dice score and mIoU. The model effectively handled 
densely packed and overlapping nuclei by leveraging 
global contextual information from SAM, aiding in 

Table 1. Model performance across different datasets.

Dataset Model Dice mIoU 

CryoNuSeg 

U-Net 0.7371 0.610 

DDU-Net 0.8143 0.6822

U-Net3+ 0.778 0.6432

AWGUNET 0.764 0.6381𝑒U-Net3+ 0.8401 0.7644

SAM +𝒆U-Net3+ 0.8942 0.8164

NuInsSeg 

U-Net 0.7997 0.6781

DDU-Net 0.7154 0.6133

U-Net3+ 0.7844 0.7261

AWGUNET 0.7792 0.7236𝑒U-Net3+ 0.8307 0.8163

SAM +𝒆U-Net3+ 0.9399 0.8938

CoNIC 

U-Net 0.7353 0.6214

DDU-Net 0.827 0.7347

U-Net3+ 0.8474 0.7992

AWGUNET 0.8419 0.7944𝑒U-Net3+ 0.8966 0.8539

SAM +𝒆U-Net3+ 0.9351 0.8869
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distinguishing individual nuclei in crowded regions. 
‧ CoNIC: The model showed a 9% improvement in 
both Dice score and mIoU, demonstrating its ability to 
generalize across diverse tissue types despite signifi-
cant variability in nuclear appearance. 

 
These performance differences across datasets can be at-

tributed to the unique characteristics and challenges pre-
sented by each dataset. Our proposed methodology even 
outperforms the recently released AWGUNET [26] that 
uses wavelet for guiding task-specific U-Net model.  

The choice of activation function has a substantial im-
pact on segmentation performance and is detailed in Table 
2. The inclusion of GLUs as activation function in the 𝑒U-
Net3+ architecture has significantly outperformed other 
commonly used activation functions, such as ReLU, 
LeakyReLU [46], and Swish [47], across all datasets. 

The GLU-enhanced model achieved a Dice score of 
0.8401 on CryoNuSeg, 0.8307 on NuInsSeg, and 0.8966 on 
CoNIC, surpassing ReLU, LeakyReLU, and Swish by no-
table margins. This demonstrates the superiority of GLU in 
enabling selective feature activation, allowing the model to 
focus on the most relevant regions of the image for precise 
segmentation, especially in complex histological samples. 
The gating mechanism of GLU provides an adaptive feature 
selection that dynamically activates diagnostically im-
portant features, leading to more refined segmentation re-
sults. 

The effectiveness of the proposed Gated Fusion Block 
(GFB) is evident from the performance gains observed. As 
shown in Table 3, incorporating the GFB into the model re-
sulted in marked improvements across all datasets. The eU-
Net3+ model with GFB achieved higher Dice scores and 
mIoU values compared to the version without GFB and 
shows the importance of effective feature fusion in enhanc-
ing segmentation accuracy. The GFB effectively addressed 
the challenge of fusing local and global features by employ-
ing GLUs for selective gating and a cross-attention mecha-
nism for feature alignment. This allowed the model to dy-
namically balance fine-grained local features and broader 
contextual insights, leading to more accurate segmentations. 

In addition, we evaluated different variants of the SAM 
model. As shown in Table 4, the ViT-B (Base) model con- 

sistently outperformed the larger ViT-L and ViT-H models. 
The ViT-B model provided an optimal level of global con-
text without overwhelming the task-specific model with ex-
cessive detail, allowing for better integration and improved 
segmentation results. 

The primary reason for the superior performance of the 
ViT-B (Base) model can be attributed to its ability to main-
tain a more balanced level of ambiguity in its representa-
tions. Although the ViT-H (Huge) model, with its 636M pa-
rameters, provides more detailed and nuanced representa-
tions of the input images, can lead to the loss of necessary 
ambiguity in certain regions of the histological images, as 
illustrated in Fig. 2. The ViT-B model, with 91M parame-
ters, provided a more optimal level of ambiguity in global 
context which allowed the 𝑒U-Net3+ task-specific model 
to make finer decisions in ambiguous regions, such as dis-
tinguishing between nuclei and non-nuclei areas. By allow-
ing the task-specific model to handle these more nuanced 
decisions, rather than relying entirely on SAM's global rep-
resentation, the proposed model was able to achieve more 
accurate segmentation results. 

Fig. 3 visually depicts the performance of various models 
across datasets. The violin plots in Fig. 4 provide further 
insight into the distribution of Dice scores for models with 
and without SAM integration. Mean Dice Scores (dotted 
lines) show a clear improvement with SAM integration 
across all datasets. 

The violin plot in Fig. 4 also illustrates the variance in 
Dice scores, showing that SAM-guided models produce 
more consistent and reliable results, with less variance in 
their predictions. 

Fig. 5 shows the qualitative assessment of the proposed 
model. The circles areas in the image highlights some of the 
regions where inclusion of SAM in 𝑒U-Net3+ performed 
better than using only the task-specific model. The SAM 

Table 2. Effectiveness of GLU as activation function. 

Activation functions CryoNuSeg NuInsSeg CoNIC

ReLU 0.778 0.7844 0.8474

LeakyReLU 0.7931 0.8012 0.8567

Swish 0.7583 0.7721 0.8439

GLU 0.8401 0.8307 0.8966

Table 3. Effectiveness of the proposed gated fusion block (GFB).

Model CryoN 
uSeg NuInsSeg CoNIC 𝑒U-Net3+ 0.8401 0.8307 0.8966 𝑒U-Net3+ w/o GFB 0.8235 0.8146 0.8918 𝒆U-Net3+w/GFB 0.8942 0.9399 0.9351 

Table 4. Effectiveness of the SAM frozen models. 

Frozen models CryoNuSeg NuInsSeg CoNIC 

ViT - B 0.8942 0.9399 0.9351 

ViT - L 0.8745 0.8918 0.9072 

ViT - H 0.8731 0.8867 0.8917 
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guided predictions generally show more precise and accu-
rate segmentation, further confirming the effects of the pro-
posed method of adding global context from SAM to im-
prove the segmentation accuracy of the task-specific model. 

 There are performance differences between three dif-
ferent datasets as the images in the datasets contain varied 
properties. In the data collection of histopathology images 
various techniques are used for creating the whole slide 
images. For instance, CryoNuSeg contains cryo-sectioned 
images that may include freezing artifacts affecting image 
clarity; NuInsSeg features densely packed nuclei from di- 
verse tissues with varying staining techniques, making seg-
mentation challenging; and CoNIC encompasses images 
from multiple organs with different staining protocols, re-
sulting in significant variability in nuclear appearance. 
These differences contribute to the varied performance of 
our model across the datasets. 

  
Ⅴ. CONCLUSION 

In this paper, we introduced a novel method for nuclei 
segmentation in histopathological images. We integrated 
task-specific models with foundation models to enhance 
performance. Specifically, we improved the U-Net3+ archi- 

 
Fig. 5. Qualitative evaluation of segmentation performance of sample images across three datasets. 𝒆U-Net3+ denotes the model with 
just adaptive feature selection and SAM+𝒆U-Net3+ denotes the model with the SAM guidance. SAM+𝒆U-Net3+ model shows more 
resemblance with the ground truth segmentation mask as highlighted in the images.  

 
 

  

Fig. 3. Visual comparison of proposed model performance. 

 
 

  

Fig. 4. Violin plot of dice score distribution during inference for
with and without SAM integration. 
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tecture by incorporating GLUs for adaptive feature selec-
tion. We also proposed GFB that dynamically fuses local 
(from 𝑒U-Net3+) and global representations (from SAM) 
using cross-attention and gated squeeze-and-excitation 
techniques. This fusion of global and local features enabled 
our model to tackle challenges such as varying tissue struc-
tures, complex staining techniques, and densely packed nu-
clei. Our experiments on three challenging histopathologi-
cal datasets—CryoNuSeg, NuInsSeg, and CoNIC—de-
mon-strated significant improvements in segmentation ac-
curacy. Incorporating SAM's global context led to Dice 
score improvements of up to 12% on CryoNuSeg, 15.55% 
on NuInsSeg, and 9% on CoNIC compared to baseline 
models. Our analysis revealed that the ViT-B variant of 
SAM outperformed larger ViT models. It provided an opti-
mal balance between capturing global context and compu-
tational efficiency. Visual assessments confirmed that 
SAM-guided models produced more accurate and reliable 
segmentations with reduced variance in performance. By 
effectively merging task-specific models with foundation 
models, our approach obtains the state-of-the-art results in 
nuclei segmentation. It also presents a flexible framework 
for integrating local and global representations in medical 
imaging. Future research can explore further optimizations 
of the fusion mechanisms. This includes experimenting 
with different attention strategies or adaptive weighting be-
tween local and global features. 
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