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I. INTRODUCTION  

How should we aggregate data from the many sensors 
around the world? What is the optimal way, if any, to do 
that? Or more precisely, what exactly are the suitable 
measures for such new optimization problems? These are 
the issues that we focus on in this paper [1]. The 
background of our interest comes from the recent growth of 
the new digital world in which we can get data from huge 
numbers of sensors distributed worldwide. Machine-to-
machine (M2M) communications are said to consume as 
much as 70 percent of information flows in the Internet—
or perhaps we should say, the Internet of Things (IoT). This 
expanding digital universe offers so much data and 
information about our environment that we are able to 
understand what is happening around us even though we 
are not always staring at it right in front of us. Instead, loyal 
agents, sensors equipped with digital eyes and ears 
engineered by us, can keep gathering relevant information 
on our behalf [2]. However, this situation causes a new kind 

of problem. That is, since sensors have become cheap to 
buy or create, we might not have sufficient network 
capacity to carry the data streams generated by these 
diligent devices. Therefore, it is crucial to investigate how 
to manage a large number of sensors under realistic 
constraints on network resources, in particular, network 
bandwidth 

To this aim, in this paper, we present a theoretical 
approach which is based on the Gaussian approximation. 
This is the most intuitive approach for analyzing and 
understanding the fundamental tradeoff, that is, using many 
sensors involves the difficult problem of collecting and 
merging data, whereas using very few sensors only offers 
little about the subject. The Gaussian analysis captures this 
sort of tradeoff quantitatively well with a rather simple and 
easy calculation. Moreover, we also show some non-trivial 
behavior of such data aggregation tasks, from a point of 
view of a new model for ad-hoc sensor networks. 
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II. SYSTEM MODEL 
 
In this paper, we consider a binary model for the sensing 

system. We assume that the state of the sensing target ܺሺݐሻ 
and the corresponding sensing result ௔ܻሺݐሻ are all binary 
symbols for sensing event label ݐ ൌ 1, 2,⋯ , ܶ and sensor 
label ܽ ൌ 1, 2,⋯ ,  ሻ  be a realization of theݐሺݔ We let . ܮ
random variable ܺሺݐሻ  and ݕ௔ሺݐሻ  be a corresponding 
realization of the random variable ௔ܻሺݐሻ. In this paper, we 
assume that ܺሺݐሻ  is a collection of the Bernoulli (1/2) 
random variables. That is, the probability of getting ݔሺݐሻ ൌ
1 is always 1/2 for any ݐ, and similarly for ݔሺݐሻ ൌ 0. This 
simplest setup implies that there is no redundancy in the 
information. 

 
2.1. Noisy Sensing 

Since we assume a certain level of noise, the individual 
values ݕ௔ሺݐሻ could be different for different values of the 
sensor label ܽ. The simplest model for the noisy sensing 
would be a stochastic process defined to be 
 

ܲሺݕ௔ሺݐሻ|	 ሻሻݐሺݔ ൌ ൜
1 െ ݌ if	 ሻݐሺݔ ൌ ሻݐ௔ሺݕ
݌ otherwise

 , 

 
which is often called the binary symmetric channel (BSC) 
in the field of information theory. Notice that we assumed 
that the flip probability is the same for all sensors. 
 

Fig.1. The communications system model for noisy sensing with 
separate encoding/decoding ansatz, where the system level 
aggregation is done by the majority vote. 
 
2.2. Separate Encoding 

Now, the sensors encode the noisy data bits ݕ௔ሺݐሻ  of 
length ܶ  into their codewords, say ݖ௔ሺݏሻ , of length ܵ 
that are also binary sequences. In such a case, the individual 

data rate for the encoding is ܴ ൌ ܵ/ܶ. We assume that the 
individual data rate does not depend on the value of the 
label ܽ. Therefore, the combined data rate is simply given 
by the formula ܥ ൌ  In the CEO problem, a famous . ܮܴ
model for sensing and communications tasks, the encoding 
is done independently at every sensor ܽ, while we have no 
such restrictions on the decoders. This separate encoding 
assumption is quite natural for a collection of independent 
sensors, since mutual communications tasks require some 
computational resources. 
 
2.3. Separate Decoding 

As for the decoding process, we use notations ݕො௔ሺݐሻ for 
the reconstructions of noisy data bits ݕ௔ሺݐሻ. Contrary to the 
spirit of the CEO problem, we do not focus further on the 
optimal joint decoding with ݕො௔ሺݐሻ . Instead, we restrict 
ourselves on considering the practical scenario in which the 
estimate for the original data bits, say ݔො, is determined by 
the collection of ݕො௔ሺݐሻ that are independently decoded by 
the corresponding decoders. 
 
2.4. Data Aggregation Tasks 

Lastly, the central computer then uses the reconstructed 
data ݕො௔ሺݐሻ to calculate the estimate ݔො for the original bit 
 ሻ have theݐො௔ሺݕ Here we assume that the reproductions .ݔ
same distortion level, corresponding to the assumption that 
all sensor agents have the same ability for 
encoding/decoding tasks. This is called the exchangeable 
sensor ansatz. 
Hereafter, what we call the distortion will be the Hamming 
distortion, defined to be 
 

݀ሺݔሺݐሻ, ሻሻ=ቄݐ௔ሺݕ
0 if	 ሻݐሺݔ ൌ ሻݐ௔ሺݕ
1 otherwise

  

 
The distortion measure is so far defined on a bit-by-bit basis. 
However, it is an easy matter to extend the above definition 
to the whole sequence of bits. The distortion between the 
sequences would be the average value of such distortion 
bits 〈݀ሺܺሺݐሻ, ௔ܻሺݐሻሻ〉. Since we impose the exchangeable 
sensor ansatz, as is mentioned before, it is known that the 
optimal estimate for the original bit is nothing but the 
majority vote, 
 

ሻݐොሺݔ     ൌ ቄ
1 if	 〈ሻݐො௔ሺݕ〉 ൒ 0.5
0 otheriwse

  

 
Together with the bit-wise calculation for each ݕො௔ሺݐሻ , 
which can be done sequentially, we can easily give the 
overall estimate for the original data bits ݔሺݐሻ. 
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Fig.2. The optimal data rates for lossy coding given a certain noise 
level. The combined data rate is fixed to a large number. 
 

III. OPTIMALITY MEASURE 
 

Next, we introduce and define the system-level 
performance based on what we call the expected bit error 
rate, or simply BER, in information theory. This measure 

could be written by ܲሺܺሺݐሻ ് ෠ܺሺݐሻሻ or more explicitly 
 

௣ሺܴሻܫ ൌ lim
஼	 →∞

െ1

ܥ
log௘ ܲ ቀܺሺݐሻ

് ෠ܺ	 ሺݐሻቁ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ1ሻ 

 
for a given pair of noise	 level	  and individual data rate ݌
ܴ [3]. This indicates that overall systematic errors reduce 
exponentially fast when the combined data rate, not an 
individual one, tends to infinity. Since our exchangeable 
sensor ansatz yields the Bernoulli process in the analysis, it 
is an easy matter to check that for 0 ൏ ܴ ൑ 1, 
 
௣ሺRሻܫ

ൌ
,݌ሺߙ ܴሻଶ

2ܴ൫1 െ ,݌ሺߙ ܴሻ൯൫1 ൅ ,݌ሺߙ ܴሻ൯
	 	 	 	 	 	 	 	 	 	 	 	 ሺ2ሻ 

 
with 
 

,݌ሺߙ ܴሻ

ൌ ሺ1 െ ሻ൫1݌2

െ 	ሺܴሻ൯ܦ2 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ3ሻ 

 
where ܦሺܴሻ denotes the performance of our encoder and 
decoder pair [4]. The preceding formula for the exponential 
rate of decay is based on the simple Gaussian 
approximation, which enables us to qualitatively capture 
the system level behavior of a collective system of this kind. 
Below, Figure 3 shows the numerical evaluation for the 

tradeoff between the binary strategic options with the data 
rates 	 ܴ → 0 and ܴ ൌ 1, respectively. In the next section, 
we see what happens if the scheme is applied together with 
practical heuristics. 
 

 
Fig.3. Schematic representation of threshold behavior of 
optimal data rates for individual sensors. Red colored 
region corresponds to optimal data rate ܴ∗ ൌ 1, while blue 
colored region indicates ܴ∗ → 0  if we only have the 
binary options. 
 

IV. EXPERIMENTS 
 
We first consider a class of practical encoders, which are 
based on low-density parity check error-correcting codes 
and message passing technique for lossy compression [5,6]. 
The simplest heuristic algorithm here would be one that is 
based on the so-called Thouless-Anderson-Palmer’s 
approach in physics, or what we call reinforcement belief 
propagation in terms of information theory. In our notations, 
the procedure can be written as below. Write a set of newly 
defined variables as ݉௦௧

௔ ሺ݆ሻ , ෝ݉௦௧
௔ ሺ݆ሻ  for ݆ ൌ 1, 2, ⋯  . 

Then, we find 
 
݉௦௧
௔ ሺ݆ሻ 

ൌ tanhቌ ෍ tanhିଵ ෝ݉௦௧ᇲ
௔ ሺ݆ሻ ൅ tanhିଵ ௦ሺ݆ሻ݉ߛ

௧ᇲ∈ெሺ௦ሻ∖௧

ቍ 

ෝ݉௦௧
௔ ሺ݆ ൅ 1ሻ ൌ tanh൫ܬߚሺݐሻ൯ ෑ ݉௦ᇲ௧ሺ݆ሻ

௦ᇲ∈௅ሺ௧ሻ∖௦

 

 
with a posterior approximation 
 
݉௦
௔ሺ݆ሻ 

ൌ tanhቌ ෍ tanhିଵ ෝ݉௦௧
௔ ሺ݆ሻ ൅ tanhିଵ ௦ሺ݆ሻ݉ߛ

௧∈ெሺ௦ሻ

ቍ 
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where ܬሺݐሻ  represents the antipodal translation of ݔሺݐሻ . 
These equations give an iterative procedure to get a 
collection of ݖ௔ሺݏሻ  that could be calculated from the 
Boolean translation of ݉௦

௔ሺ݆ሻ for the steps ݆ large enough 
[7]. 

Fig.4. Example of noisy data aggregation without coding the 
individual sequences. The data rate is	 ܴ ൌ 1. 
 
 
To see how this works, we consider some simple examples 
which may demonstrate the potential benefit of our strategy. 
Figure 4 denotes the noisy data aggregation without any 
coding techniques. In other words, we set the value of 
individual data rate to be one. In this setup, the bit error rate 
for the final estimate would be 9%. 

Fig.5. Example of noisy data aggregation with coding the 
individual sequences. The data rate is R=2/3. 
 
On the other hand, Figure 5 represents the benefit from our 
sensing data aggregation strategy with some coding 
techniques. Here we find that the final bit error rate is as 
small as 5%. These results indicate that there exists a certain 
noise level in which our large scale data aggregation 
scheme does outperform the standard type of information 

gathering without the method of lossy data compression. 
 
 

V. OPEN PROBLEMS 
 
In this paper, we considered insights from a point of view 
of large deviations, where one observes a non-trivial 
tradeoff between the collection of many data and the 
collection of good data. Here we defined the system level 
optimality measure (1) as the exponential rate of decay of 
expected errors for the estimation, assuming that the system 
size would be large enough. According to the traditional and 
pedagogical Gaussian approach, one observes a kind of 
``phase transition’’ of optimal data rate with respect to the 
noise level. In other words, there is a critical point for the 
noise level, beyond which it is better for us to deploy as 
many sensors as possible. This is called the second order 
transition, implying the continuity of the optimal data rates 
for various noise levels. 
Recently, we have shown that there may be another kind of 
transition if one considers sensor networks for which the 
combined data rate is not fixed but actually increases when 
we deploy more sensors. In this case, the behavior of the 
optimal data rate drastically changes.  
 

 
Fig.6. The optimal data rates for lossy coding given a certain noi
se level in a sensor network where the combined data rate increas
es at a certain rate if one deploys more sensors. Here we used ߛ ൌ
1.0 ൈ 10ିଷ. 
 
In this case, we consider the dynamical capacity constraint 
ఊܮܥ ൌ ܥ instead of ,ܮܴ ൌ 	,ܮܴ  with a parameter ߛ that 
controls the rate of increase of the total flow per target sink. 
While the condition ߛ ൌ 0  retrieves the conventional 
CEO model, we could analyze more generic situations 0 ൑
γ ൑ 1  by considering the same (1) as the optimality 
measure for the system [8]. As you can see in Figure 6 the 
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optimal data rate is not a continuous function with respect 
to the noise level any more. Instead, it is discontinuous at 
the point around the critical point we have discussed in this 
paper. This type of transition is often called a first order 
transition in the field of statistical mechanics. At this point, 
however, this is nothing but a naïve conjecture based on the 
Gaussian approximation (2) with (3). We are now carrying 
out a large scale simulation to verify this phenomenon. 

In this paper, we consider a binary model for the 
sensing system. We assume that the state of the sensi
ng target ܺሺݐሻ and the corresponding sensing result 

௔ܻሺݐሻ are all binary symbols for sensing event label ݐ
ൌ 1, 2,⋯ , ܶ and sensor label ܽ ൌ 1, 2,⋯ , ݔ We let .ܮ
ሺݐሻ be a realization of the random variable ܺሺݐሻ and 
ሻ be a corresponding realization of the random vݐ௔ሺݕ
ariable ௔ܻሺݐሻ. In this paper, we assume that ܺሺݐሻ is a 
collection of the Bernoulli(1/2) random variables. That 
is, the probability of getting ݔሺݐሻ ൌ 1 is always 1/2 f
or any ݐ, and similarly for ݔሺݐሻ ൌ 0. This simplest se
tup implies that there is no redundancy in the inform
ation. 
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