
Journal of Multimedia Information System VOL. 4, NO. 2, June 2017(pp.57-64): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2017.4.2.57

57

I. INTRODUCTION

Due to the lack of widely accepted standards and

definitions in the information technology research area,

researchers in the field are frequently confused while

doing peer reviews. Since this paper is all about the

software vulnerability related materials, first, we are trying

to define the word vulnerability.

 The software vulnerability is a subset of vulnerability in

general, so the software vulnerability should inherit the

characteristics what the general vulnerability has.

According to the Collins English dictionary

(http://www.collinslanguage.com) “Someone who is

vulnerable is weak and without protection, with the result

that they are easily hurt physically or emotionally.” In

other words, it represents a susceptibility to malevolent

manipulations.

 Even though the concept is crystal clear, it is not that

simple to define the software vulnerability due to the lack

of standards in the field; there’s no widely accepted

definition for the word currently [1-2]. Yet, there are many

definitions proposed, and here are some of them:

 “Security flaws, defects, or mistakes in software that

can be directly used by a hacker to gain access to a

system or network” [3]

 “Weakness in an information system, system security

procedures, internal controls, or implementation that

could be exploited or triggered by a threat source” [4]

 “Weakness in the security system which might be

exploited by malicious users causing loss or harm” [5]

 “A vulnerable system is an authorized state from

which an unauthorized state can be reached using

authorized state transitions; a vulnerability is a

characterization of a vulnerable state which

distinguishes it from all non-vulnerable states” [6]

 “Defect which enables an attacker to bypass security

measures”[7]

So far, there are not many literatures discussing the

terminology in depth. As one of the early works, Otwell

and Aldridge [8] examined the treatment of vulnerability

at the 1988 Risk Model Builders’ Workshop. They say

that defining the word of vulnerability formally is proven

to be a complex task while showing the several proposed

definitions from the researchers in the workshop. Some of

them are:

 “Weaknesses that allow a threat to compromise the

security (confidentiality, integrity, or availability) of

an asset” [9]

 “Achievable bad events”, which “implies that the

protections against them are nonexistent, insufficient,

or insufficiently protected” [10]

 “The ability of an agent to cause an attack event” [11]

Extended Linear Vulnerability Discovery Process

HyunChul Joh
*,1

Abstract

Numerous software vulnerabilities have been found in the popular operating systems. And recently, robust linear behaviors in software

vulnerability discovery process have been noticeably observed among the many popular systems having multi-versions released. Software

users need to estimate how much their software systems are risk enough so that they need to take an action before it is too late. Security

vulnerabilities are discovered throughout the life of a software system by both the developers, and normal end-users. So far there have been

several vulnerability discovery models are proposed to describe the vulnerability discovery pattern for determining readiness for patch

release, optimal resource allocations or evaluating the risk of vulnerability exploitation. Here, we apply a linear vulnerability discovery

model into Windows operating systems to see the linear discovery trends currently observed often. The applicability of the observation

form the paper show that linear discovery model fits very well with aggregate version rather than each version.

Key Words: Software vulnerability, Risk assessment, Linear vulnerability discovery model.

Manuscript received June 12, 2017; Revised June 23, 2017; Accepted June 27, 2017. (ID No. JMIS-2017-0012)

Corresponding Author (*): HyunChul Joh, Room# 06-415, 50 Gamasilgil, Hayangup Gyeongsan Gyeongbuk, South Korea

Dept. of Computer Eng., Kyungil University, 38428 Korea, joh@kiu.kr, +82-53-600-5563
1Dept. of Computer Eng., Kyungil University, joh@kiu.kr

Extended linear vulnerability discovery process

58

A decade later, in 1998, Krsul [1] defined the software

vulnerability in his doctoral dissertation as “an instance of

an error in the specification, development, or

configuration of software such that its execution can

violate the security policy.” And another decade later, in

2007, Ozment supports the Krsul’s definition with some

minor modification; after the modification, the definition

is read as “an instance of [a mistake] in the specification,

development, or configuration of software such that its

execution can violate the [explicit or implicit] security

policy” [2]. Ozment made two changes. The first one is

that the mistake is used instead of the error since in

software engineering, an error is already defined as “the

amount by which the result is incorrect” [12]. The second

is that he put the explicit or implicit in the modified

definition to emphasize the fact that all systems have a

security policy whether it is explicit or not.

Meanwhile, after showing the definitions, Otwell and

Aldridge [13] stated that it is clear that all the researchers

have the same general conception of vulnerability and

differ mainly how vulnerabilities of a particular system are

specified and measured, and also clear that “more

vulnerable” means “easier to adversely affect” and “less

vulnerable” is better, other things being equal.

In this paper, we follow the definition from CVE

website (http://cve.mitre.org/about/terminology.html): an

information security vulnerability is a mistake in software

that can be directly used by a hacker to gain access to a

system or network. Just like what Frei stated in his

dissertation [14], we also only consider vulnerabilities

listed in the CVE directories. Hence, it does make sense

for this paper to use the definition from CVE since all the

vulnerability datasets used in this paper have CVE

identification numbers.

II. ACTORS ON SOFTWARE

VULNERABILITY ECOSYSTEM

 There are many players in the software vulnerability

ecosystem. According to Breukers [15] the vulnerability

ecosystem is representing all the relationships among the

vulnerability lifecycle including vulnerability discovery,

exploitation, disclosure and patching of a software

vulnerability, combining of interaction of all the actors

and mechanisms.

So far, many researchers have proposed similar

vulnerability lifecycle model including Joh and Malaiya

[16]. In the vulnerability life journey, there are major

events such as birth of vulnerability, discovery, internal

disclosure, public disclosure, exploitation, script, patch

available and death.

Software developers are the creators of security

vulnerabilities in software systems. This could be a

commercial or governmental vendor, sub-contractor,

freelancer, or an open source community. Unsafe or

careless programming behaviors cause the security defects

as shown in Figure 1.

 There are largely two types of vulnerability

discoverer: white hat and black hat. When white hats

discover the security vulnerability, they follow the

responsible disclosure practice, which usually means a full

disclosure under the all stakeholders' agreement of a

period of time for developing patches on the vulnerability

before publishing the details. On the other hand, if black

Fig. 1. Major factors influencing on software vulnerability ecosystem

Journal of Multimedia Information System VOL. 4, NO. 2, June 2017(pp.57-64): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2017.4.2.57

59

hats detect the vulnerability, they use the information for

their own goods.

 Radianti et al. [17] empirically shows that there is

indeed vulnerability black markets along with the white

markets run by security companies. Whether it is a black

or white, the markets give motivations and incentives for

the vulnerability hunters.

Many commercial software vendors directly sell their

products online, but often retailers and service providers

do those businesses for the software producers. The

product buyers could be home users or organizations. For

the home users, they need to install the products and

patches in their systems by themselves. In organizations,

usually specialized administrators do the jobs.

Administrators’ roles are very important for defending

systems efficiently against malicious users and attackers.

They need to decide when to install the newly released

security updates because some patches or updates cause

problems which not exist before.

The terminology of “script kiddie” is frequently used to

distinguish from “black hat” who is able to create a

hacking tools and able to analyze system’s security holes.

The script kiddie uses scripts or programs made by other

skilled hackers to attack computer systems and networks.

III. EXTENDED LINEAR

VULNERABILITY DISCOVERY PROCESS

Recently, robust linear behaviors in software

vulnerability discovery process have been noticeably

observed among the many popular systems having multi-

versions released. Schryen [18] empirically examined

vulnerability detection growth processes in seventeen

software systems. He found that 14 out of the 17 systems

show a significant linear or, at least, piecewise linear

correlation between time and the number of cumulative

published vulnerabilities, but without a deep investigation

why the linear processes are prevalent. While showing the

results, the author disproves the S-shape logistic

vulnerability discovery pattern proposed by [19].

In Figure 2, the solid S-shaped line shows the shape of

the vulnerability discovery process in AML [20] with the

three distinctive phases. In the long run, for a software

system, the vulnerability discovery process should look

like the S-shape pattern when all the source codes with

market effort put on it are reflected. During the release

period, the vulnerability discovery rate gradually increases.

At this phase, called learning phase, the software is

gaining market share gradually and installed bases is small.

In the linear phase, the discovery rate reaches the

maximum due to the popularity, and finally, in the

saturation phase, vulnerability discovery rate slows down.

However, under certain circumstances, the S-shape

could be distorted, occasionally, seriously. The length of

the second phase could be extended as long as new code is

injected with certain levels of popularity lasted among

users, so that the final phase tends to appear significantly

Fig. 2. S-shaped discovery process and extended linear phase

Fig. 3. The extended linear phase is caused by shared

vulnerabilities in successive versions

Fig. 4. The extended linear phase is caused by constant effort

put on a system with a rich vulnerability pool

Extended linear vulnerability discovery process

60

later. Sometimes, after a clear saturation phase, new

vulnerabilities are found. When this happens repeatedly, a

discovery process forms a stairway-like pattern. Yet

another, the first phase could not be seen at all. It is

possible that combinations of above cases are coming out

altogether. Among the mutant S-shapes above, here,

mainly, the reason behind the extended linear phase is

examined which currently appears notably. Other

mutations also can be surmised based on the presentations.

The red dashed line, in Figure 2 highlights an extended

linear phase. The first possible reason for this could be

code sharing throughout the successive versions. New

versions of software systems usually based on the

previous version. When the product is getting popular, the

number of users is also getting increasing. As a result,

vulnerabilities originated from the earlier version starts to

be found in the later version.

Moreover, new chunk of codes added into a new

version introduces new vulnerabilities. When those

software upgrades or patches go on and on, the extended

linear phase could be resulted. Figure 3 shows this

behavior. The original idea of sharing vulnerability is

already introduced by [21]. In the figure, the vulnerability

discovery rate for the original software system has been

almost hit the saturation phase, marked by the solid black

line (the first bell shape hump), but due to the shared

vulnerabilities in successive versions (the grey dashed

lines), the vulnerability discovery rate for the original

product continually rises. The slope in the number of

cumulative vulnerabilities is mainly influenced by how

many codes are shared between the successive versions.

Hence, as long as new versions, sharing codes with the

previous version, are released with an enough market

share, the extended linear phase will be observed.

The second reason could be, for a software system, the

constant number of users with a vulnerability pool having

a sheer amount of vulnerabilities which continually

discovered with a constant rate due to a balanced effort,

not increasing nor decreasing, put on the system, such as

number of users. In this case, it will take some time

proportional to the size of the vulnerability pool to be

exhausted which causes a longer linear phase with a

bigger pool. The concept is described in Fig. 4.

III. Observations

The software systems examined for the linear trend here

is Windows operating systems. The datasets are minded at

NVD (http://nvd.nist.gov) on January 2011. Table 1 shows

the release dates for the software systems with the number

of vulnerabilities shared among the successive versions in

Fig. 5. Linear vulnerability growth trends. Black dots represent actual data points and the red lines are linear model fittings. Vertical

dotted lines are released dates in the first graph.

Table 1. Shared number of vulnerabilities and percentages.

 B

A

2K

(191)

XP

(113)

Vista

(49)

Seven

(8)

2K

2000-02-17

493

100%

300

60.85%

99

20.08%

28

5.67%

XP

2001-08-24

300

63.29%

474

100%

158

33.33%

58

12.23%

Vista

2006-11-08

99

44.39%

158

70.85%

223

100%

72

32.28%

Seven

2009-07-22

28

35%

58

72.5%

72

90%

80

100%

Journal of Multimedia Information System VOL. 4, NO. 2, June 2017(pp.57-64): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2017.4.2.57

61

each OS version. In the table, for the percentages, it

should be read as A is sharing X% with B, where A and B

are the row and column respectively as marked.

The oldest Windows OS is 2K and the newest one is

Seven in the table. It could be conjecturable that the code

sharing is higher with adjacent versions than others based

on the shared number of vulnerabilities. 90% of

vulnerabilities in Windows Seven is sharing with Vista,

70.85% of vulnerabilities in Vista is from XP, and 63.29%

of the vulnerabilities in XP is from the previous version,

which uncovers that the Windows OSes are continually

built on top of its ancestors closely.

Plots in Figure 5 shows the linear model fittings with

their R2 values. In all cases, the linear patterns are

significantly observed and the linear fittings are well

performed. We do not see any saturation phase at the end

of the data periods.

Figure 6 shows the number of unique vulnerabilities in

each specific version. Their R2 values can be found at

each sub-caption. First, it is observed that the number of

vulnerabilities have been dramatically reduced in each

sub-plot compared to its entire vulnerability counterpart

sub-plot from Figure 5 due to the removing the shared

vulnerabilities. The noteworthy thing is that the learning

phases start to appear more clearly in Figure 6. Also, the

third phase tends to come out in Win 2K when its market

share has been encroached by its successive version which

proves that the extended linear phenomena is due to the

code sharing with the popular successive versions.

Especially, Win 2K reveals the saturation phase with

unique vulnerabilities while their counterpart sub-plots for

the entire vulnerabilities do not.

The following equation represents the simple linear

discovery model where S represents the slope or discovery

rate and k is y-axis intersection which does not have a

clear meaning.

 ()

Now, predicting the exact discovery rate or slope for the

extended linear phase is not an easy task. However, we

could achieve fairly easily a probable scope of the rate

falling into the ranges from the maximum and minimum

slopes estimated by AML model fitting.

Fig. 6. Linear vulnerability growth trends by version with unique vulnerabilities in each version. Black dots represent actual data

points and the red lines are linear model fittings.

Fig. 7. Estimated Max/Min slopes by AML

Table 2. AML model fitting parameters and fitting results

AML para. A AML para. B AML para. C

100E-06 932.7873 0.0475

R2 Min Slope Max Slope

0.9908 0.1455 0.2183

Transition Point1 Mid point Transition Point2

2004-03-29 2008-02-03 2011-12-11

Extended linear vulnerability discovery process

62

Figure 7 demonstrates the maximum (()) and the

minimum (()) slopes during the linear phase in the

AML model. Consequently, the difference () between the

two slopes can be achieved. A and B are from the AML

parameters. The maximum slope is on the tangent line of

the mid-point whereas the minimum slope exists on either

of the two transition points. Hence, in some degree, it is

possible to estimate the current extended linear

vulnerability discovery rate for the multi-version software

systems.

When we apply the method to get the slope from the

linear fitting for the aggregated version in Figure 5, the

result is 0.1569453. If we conduct the same analysis with

other operating systems such as OSX, we could compare

the slopes among different OSes. Table 2 shows the AML

model fitting parameters on the aggregated version, fitting

result with R2 value, Min and Max possible slopes, and

the three Transition points (TP1, MP, TP2) [22].

TP1 by AML model fitting are estimated a bit later than

the time point supposed to be, due to the code evolutions.

When we consider currently observed strong linear trends

across the discovery patterns, transition points, especially

MP and TP2, in Table 2 should not be accurate

estimations because of the continuous software evolving

which should trigger shifting of transition points.

IV. DISCUSSION

Although upper and lower boundaries for linear rates

could be estimated and there are already some VDMs

available, it would be nice to estimate the linear rate more

precisely with more less complex relationship for taking

advantage of the newly appeared linear pattern.

By its nature, a quantitative vulnerability discovery

model requires empirical observations on the relationship

between a growth trend in actual data and a set of factors

believed to influence on the trend. At the beginning of the

investigation, usually, the relationship is unknown or

unclear, so that researchers generate some assumptions

providing a starting point which are reasonable, or

observed vaguely from the actual data but are not

confirmed in a scientific way yet. For the starters, we have

also some intuitive and vaguely observed assumptions that

might influence on the slopes in the linear model which

could be i) Skills of programming team & maturity of

vendor ii) Number of installations with code sharing iii)

Source code edit frequency iv) Software type.

First, attitude of a vendor and its developers toward

secure programming practice should effect on the degree

of slope. Experts agree that developers’ skills are

important factors influence on quality of products

although there have not been good references

quantitatively conducted. Therefore, skill of programming

team should be in inverse proportion to the slope value.

Also vendor’s maturity in its field should also be matter

for products’ quality. The better skills developers have in

the more security related mature environment, the gentler

slope should be produced.

Second, it is intuitive that the more number of

installations causes the more number of vulnerabilities

discovered. This is because, as the AML model already

has claimed, a system would be more thoroughly tested

with a bigger group of users or testers which will demand

more number of vulnerabilities found. Along with this

intuition, as long as popular enough successive versions

are released regularly, the saturation phase will not be

seen. Therefore, there should be positive growth

correlations between the slope and the number of

installations backed up by code sharing with successive

versions. As a result, code sharing also effect on the slope.

The more codes are shared, the steeper slope should be

appeared from the originated version.

Third, Zimmermann et al. [23] empirically examined

the effectiveness of classical software metrics to predict

vulnerabilities and assess how well the measurements

perform on Windows Vista. They measure the correlations

between the metrics and the number of vulnerabilities. The

study shows that all the correlations are less than 0.3,

which is considered as small effect size. However, among

them, the correlation between the frequency of source

code editing and the number of vulnerabilities claims the

highest value. Hence, the more frequently developers edit

source code, the better chances that vulnerabilities are

introduced.

Lastly, the software type matters. For example, the

growth rates and slopes for popular software systems such

as Web browsers and OSes should be steeper than other

types of systems due to the number of users. Hence, there

should be some empirical guidelines categorizing software

systems and endowing with certain weights associated

with numbers. Software systems could be grouped into

OSes, Web browsers, Web servers, Web applications,

DBMSs, etc. After the classification, proper weights need

to be associated.

Acknowledgement

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science, ICT &

Future Planning (NRF-2015R1C1A1A02036448)

REFERENCES

Journal of Multimedia Information System VOL. 4, NO. 2, June 2017(pp.57-64): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2017.4.2.57

63

[1] I. V. Krsul, “Software vulnerability analysis,” PhD

dissertation, Purdue University, West Lafayette, IN,

USA. Advisor: E. H. Spafford, 1998.

[2] A. Ozment, “Improving vulnerability discovery

models,” in Proceedings of the 2007 ACM workshop

on Quality of protection, NewYork, pp. 6–11, 2007.

[3] J.A. Wang, M. Guo, H. Wang, M. Xia and L. Zhou,

“Environmental Metrics for Software Security Based

on a Vulnerability Ontology,” in Proceedings of the

third IEEE International Conference on Secure

Software Integration and Reliability Improvement, pp.

159-168, 2009.

[4] R. Kissel, “Glossary of Key Information Security

Terms,” NIST IR 7298, 2006

[5] C.P. Pfleeger and S.L. Pfleeger, Security in

Computing. 3rd ed., Prentice Hall PTR, 2003.

[6] W.R. Cheswick and S.M. Bellovin, Firewalls and

Internet Security: Repelling the Wily Hacker.

Reading, MA: Addison-Wesley, 1994.

[7] E.E. Schultz Jr., D.S. Brown and T.A. Longstaff,

“Responding to Computer Security Incidents,”

Lawrence Livermore National Laboratory, 1990.

[8] K. Otwell and B. Aldridge, “The role of vulnerability

in risk management,” in proceedings of Computer

Security Applications Conference, pp.32-38, 1989

[9] H. Mayerfeld, “Definition and Identification of Assets

as The Basis for Risk Management,” in Proceedings

of 1988 Computer Security Risk Management Model

Builders Workshop, pp.21-34, 1988

[10] N. Lewis, “Using Binary Schemas to Model Risk

Analysis,” in Proceedings of 1988 Computer Security

Risk Management Model Builders Workshop, pp.35-

48, 1988

[11] D. Snow, “A General Model for the Risk

Management of ADP Systems,” in Proceedings of

1988 Computer Security Risk Management Model

Builders Workshop, pp.145-162, 1988

[12] IEEE standard glossary of software engineering

terminology, IEEE Standard 610.12-1990, 1990

[13] K. Otwell and B. Aldridge, “The role of vulnerability

in risk management,” in Proceedings of Computer

Security Applications Conference, pp.32-38, 1989

[14] S. Frei, “Security Econometrics - The Dynamics of

(In)Security”, Ph.D. dissertation, ETH Zurich, ISBN

1-4392-5409-5, 2009

[15] Y.P. Breukers, “The Vulnerability Ecosystem:

Exploring vulnerability discovery and the resulting

cyberattacks through agent-based modelling,” M.S.

Thesis, Delft University of Technology, Aug. 22,

2016

[16] H. Joh and Y. K. Malaiya, “Defining and Assessing

Quantitative Security Risk Measures Using

Vulnerability Lifecycle and CVSS Metrics,” in

Proceedings of the 2011 International Conference on

Security and Management, pp. 10-16, 2011

[17] J. Radianti, E. Rich, and J. Gonzalez, “Vulnerability

black markets: Empirical evidence and scenario

simulation,” in Proceedings of the 42nd Hawaii

International Conference on System Sciences, pp.1-

10, 2009

[18] G. Schryen, “Security of open source and closed

source software: An empirical comparison of

published vulnerabilities,” in Proceedings of the 15th

Americas Conference on Information Systems, 6-9

Aug., 2009

[19] O. Alhazmi, Y.K. Malaiya and I. Ray, “Security

vulnerabilities in software systems: A quantitative

perspective,” Lecture Notes in Computer Science of

Data and Applications Security XIX, vol.3654,

pp.281–294, 2005

[20] O. Alhazmi and Y.K. Malaiya, “Application of

Vulnerability Discovery Models to Major Operating

Systems,” IEEE Transactions on Reliability, vol.57,

pp.14-22, 2008

[21] J. Kim, Y.K. Malaiya and I. Ray, “Vulnerability

Discovery in Multi-Version Software Systems,” in

Proceedings of the 10th IEEE High Assurance

Systems Engineering Symposium, Washington, DC,

USA, pp.141-148, 2007

[22] O. Alhazmi and Y.K. Malaiya, “Prediction

Capabilities of Vulnerability Discovery Models,” in

Proceedings of Reliability and Maintainability

Symposium, pp. 86-91, 2006

[23] T. Zimmermann, N. Nagappan and L. Williams,

"Searching for a Needle in a Haystack: Predicting

Security Vulnerabilities for Windows Vista," in

Proceedings of the 2010 Third International

Conference on Software Testing, Verification and

Validation, pp.421-428, 2010.

Extended linear vulnerability discovery process

64

Author

HyunChul Joh is an assistant professor

in the Department of Computer

Engineering at Kyungil University since

March 2014. From 2012 to 2014, he was a

GIST college laboratory instructor in

division of liberal arts and sciences at

Gwangju Institute of Science and

Technology in Korea. His research focuses on modeling the

discovery process for security vulnerabilities and risk metrics.

He received his Ph.D. and M.S. in computer science from

Colorado State University in 2011 and 2007 respectively. He

also received a B.E. in information and communications

engineering from Hankuk University of Foreign Studies in

Korea, 2005.

