
Journal of Multimedia Information System VOL. 5, NO. 4, December 2018 (pp. 235-244): ISSN 2383-7632(Online) 

http://dx.doi.org/10.9717/JMIS.2018.5.4.235 

235 

I. INTRODUCTION  

Soil Moisture Content (SMC) is one of the key factors 

used to estimate direct surface runoff for flood forecasting, 

because the state of soil moisture at storm initiation has a 

large effect on the overall runoff magnitude [1-4]. 

Depending on the soil texture and its surface condition, 

the assumed SMC could lead to a considerable runoff 

error larger than that arising from the rainfall estimates [5].  

The SCS-CN method was developed by the United States 

Department of Agriculture (USDA) Soil Conservation 

Service in 1954 and is now referred to as the Natural 

Resource Conservation (NRCS) SCS-CN method [6-9]. 

The SCS-CN method has a parameter, the curve number 

(CN), representing SMC using a quantitative numerical 

value ranging from 30 to 100.In general, CN values are 

based on land use and soil type mappings. The land-use 

map reflects the vegetative cover conditions on the surface 

and the soils map supports assignment of hydrologic 

condition classified as A (well-drained soils with low 

runoff potential) to D (low infiltration with high runoff 

potential) [10].  

However, these studies mainly focused on long-term 

hydrologic simulations where S is allowed to vary at the 

daily or longer time scale. For example, the previous 

studies used the average monthly lake evaporation as a 

climatic index and a depletion coefficient to consider a 

decrease of SMC.  

In this study, a potential maximum soil moisture 

retention curve (S-curve) is developed to estimate a time-

variable SMC at hourly time-scales in order to improve 

continuous flood forecasting. For this purpose, a change of 

S for complex storm events and Inter-Event Time 

Duration (IETD) between independent storm events has 

been developed. This study has been applied for the Napa 
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River basin, California. The streamflow gage at St Helena 

(USGS station #11456000), located in the upper reaches 

of the basin, is used as the control gage site. 16 rainfall 

events from 2011 to 2012 are used for estimating the 

event-based SCS S-curve. 

 

1. Potential Maximum Soil Moisture Retention 

 

S is the total depth of moisture that could be stored in 

the soil column, including tension water adhering to the 

soil matrix and free water drainable by gravity. Also, S 

represents a change of SMC generally used to estimate a 

direct runoff in hydrologic modeling. Fig. 1 shows a 

physical soil layer, soil profile and a concept of soil 

moisture accounting to understand the meaning of S and 

SMC through the volumetric terms such as air, water, void 

and the moisture contents. 

Basically, the S depends on the volume of the soil-

water-air layer. In Fig. 1 (a), the soil could be classified 

among solids, water and air. Solid indicates the total 

volume of the soil particles and water consists of current 

tension water and free water arising from previous 

precipitation. In general, these two water volumes 

comprise the SMC. Air is a void space which can hold 

SMC through infiltration and percolation. Both layers, air 

and water, are the potential SMC storage. The total 

volume of voids is shown by Eq. (1). 

 

Vv= Va + Vw                         (1) 

 

Where, Va is the volume of air, and Vw is the volume of 

water. The sum of air and water represents as the total 

volume of voids, Vv. V in Fig. 1 is the total volume. 

In Fig. 1 (b) soils are divided into surface soil, topsoil, 

subsoil and bedrock. Surface soil is associated with land-

use as it relates to infiltration due to impervious surfaces, 

for example. Topsoil and subsoil establish the percolation 

rate according to soil texture. The total volume of voids is 

comprised as the sum of the soil-water-air layer in Fig. 1 

(a). Based on the soil profile, infiltration and percolation 

rates could differ, and the percolation rates from topsoil to 

subsoil could differ as rainfall moves further downward. 

For soil moisture accounting (Fig. 1 (c)), the volume of 

voids, Vv, is the sum of S and current SMC. If the soil is 

very dry, S is the absolute potential maximum retention, 

Sabs (or maximum S). A representative study by Williams 

and LaSeur [11] developed an approach for estimating 

current SMC using a relationship between the absolute 

potential maximum retention and potential maximum 

retention expressed as: 

 

SMC = Sabs– S,                            (2) 

 

where SMC consists of tension water and free water, 

which depend on antecedent precipitation. Also, S is 

dependent on the variation of SMC. 

 

2. SCS-CN Method 

 

The SCS-CN method is based on a water balance equation 

and two fundamental hypotheses [4]. The first, water 

balance assumption equates the actual amount of direct 

surface runoff (Q) to the total rainfall (P) and the ratio of 

the amount of actual infiltration (F) to the amount of S 

(Eqns 3 and 4). The second assumption relates the initial 

abstraction (Ia) to S (Eqn5). Thus, the SCS-CN method 

consists of 

 

(a) Water balance equation: 

aP I F Q                           (3) 

 

(b) Ratio hypothesis: 

a

Q F

P I S




                          (4) 

 

(c)  hypothesis: 

aI S                                  (5) 

Here,  is the initial abstraction coefficient. Historically, 

Soil Moisture Condition

(tension water + free water)
Solids

Water (SMC)
(tension water + free water)

Air

Vv

Va

Vw

Vs

Surface soil

Topsoil

Subsoil

Bedrock

Root

V

In
fi

lt
ra

ti
o

n
P

e
rc

o
la

ti
o

n

V

Vv

S

S

M

C

Sabs

Soil-Water-Air 

Layer

Soil Profile Soil Moisture 

Accounting (SMA)

(D
ri
e

s
t 
c
a

s
e

)

(a) (b) (c)

Fig. 1. Schematic diagram of the soil-water-air layer, soil profile and soil moisture accounting. 
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it is 0.2. Physically this means that for a given storm, 20% 

of S is the initial abstraction before runoff begins. 

However, Hawkins et al. (2002) found that the ratio of Ia 

to S varies widely, and they suggested that the ratio be 

0.05 rather than 0.20. 

The NRCS runoff curve number method is based on the 

following basic form to calculate direct runoff from a 

rainfall depth. 

 

2( )a

a

P I
Q

P I S




 
 for

aP I , and 0Q   for 
aP I  

          

(6) 

 

Eq. (6) (SCS, 1985) becomes 

 

2( )

(1 )

P S
Q

P S








 
                     (7) 

 

S is expressed in terms of the dimensionless SCS-CN 

through the relationship taking values from 0, when

S  , to 100, when 0S  . 

 

1,000
10S

CN
                        (8a) 

 

This definition was originally applied to the English 

metric system (with S in inches). In the SI units (with S in 

mm) the following definition should be used: 

 

25, 400
254S

CN
                      (8b) 

 

II. APPLICATION DATA 

 

1. Watershed 

The Napa River basin in Napa County, CA, is used as 
application watershed. This basin has two continuous flow 
gages managed by the U. S. Geological Survey (USGS); 
the gage at St. Helena, Napa County, CA, (USGS 
11456000) station was the primary site for this study. The 
combined Russian-Napa Rivers have been the focus for 
assessment of distributed hydrologic modeling [12]. 

 

 

 

 

 

Fig. 2. Application area, St. Helena watershed, Napa County, California. 
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As a consequence, we have compiled a large archive of 

watershed and precipitation data useful for this study. Fig. 

2 shows the Napa watershed including the land-use and 

the soil map. The drainage area is 204.8 km2 (79.3 mi2). 

Annual average precipitation is 508 mm to 685 mm of 

which 80% occurs mainly during the rainy season from 

November to March. During the rainy season there is a 

higher likelihood for multiple rainfall events within a few 

days. 

Table 1 lists the fraction (%) of area depending on the 

land-use type and the hydrologic soil group in the basin 

(Fig. 2). The sum of forest and grassland/herbaceous 

exceeds 65%, followed by cultivated crops (9.9%), 

pasture/hay (8.4%), and shrub/scrub (7.1%). Based on the 

hydrologic soil group (HSG), the drainage capability is 

relatively low as the well-drained HSG A area is only 

1.5%, and there are large areas of poorly drained HSG C 

(28.6%) and D(29.5%) soils. The NRCS cover type 

influences the initial SCS-CN mapping. Table 1 shows the 

Min./Max. SCS-CNs associated with the NRCS cover 

types. For example, for HSG C the CN can range from 65 

to 88.  

 

 

 

 

 

2. Rainfall Input Data: Multi-Radar-Multi-Sensor 
Grids 

 

As part of on-going modeling of the Russian-Napa 

watersheds [12] we have collected gridded precipitation 

fields useful for hydrologic modeling, including data from 

the Multi-Radar/Multi-Sensor (MRMS) system[13]. 

MRMS is a system with automated algorithms that 

integrate data streams from multiple radars, surface and 

upper air observations, lightning detection systems, and 

satellite and forecast models. 

The MRMS quantitative precipitation estimation (QPE) 

products can be classified based on the use of radars, the 

use of ground gauges and a bias correction method. For 

the purposes of this study, gridded precipitation fields at a 

spatial resolution of 1.0 km and temporal resolution of1 

hour were used. Moreover, the MRMS QPE was 

generated using the Vertical-Profile-of-Reflectivity (VPR) 

and Mean Field Bias (MFB) correction [14-15]. Fig. 3 

shows (a) a sample MRMS hourly rainfall map in 

Northern California and (b) the same sample MRMS 

hourly rainfall map for the application basin. 

 

Table 1. Fraction (%) of Area Depending on the Land-use and Hydrologic Soil Group, and Min/Max SCS-CN Depending on the NRCS 

Cover Types. 



Journal of Multimedia Information System VOL. 5, NO. 4, December 2018 (pp. 235-244): ISSN 2383-7632(Online) 

http://dx.doi.org/10.9717/JMIS.2018.5.4.235 

239 

 
(a) 

 
(b) 

Fig. 3. Multi/Radar Multi/Sensor data, (a) Northern 

California MRMS precipitation, and (b) MRMS 

precipitation field for St. Helena Napa basin, CA. 

 

 

III. APPICATION of S-CURVE METHOD 

and ITS RESULT 

 

1. Rainfall Input Data: Multi-Radar-Multi-Sensor 
Grids 

 

An S-curve is a relationship between ΔS and IETD to 

represent a time-variable SMC at hourly time-scales in 

order to improve continuous flood forecasting. A method 

to derive the S-curve is explained as follows:  

(a) Select complex storm events having significant 

multiple rainfalls within 72 hours with shorter IETD. In 

this study, 72 hours is assumed as the maximum IETD to 

classify an independent rainfall event, so that we have 

looked for ΔS within 3 days.  

(b) Separate the runoff hydrographs as observed at the 

USGS gage. In the hydrograph separation process, the 

direct runoff is calculated to estimate an event-based SCS-

CN for each storm pulse; this study used the N-Day 

method and the cubic spline interpolation method. In 

addition, Fig. 4 shows the definition of S during three time 

periods (Sb1, Sa1 andSb2). Sb1, Sa1&Sb2 are associated 

with the first and second rainfall pulses, respectively. Also, 

Sa1 andSb2 are associated with the inter-event percolation 

of soil water downward to the lower layer. 

(c) Estimate the CN for each rainfall pulse. To estimate 

the CN, we used the initial CN map based on the land-use 

and soil maps. The initial CN was changed incrementally 

by 1.0 % to determine the best appropriate event-based 

CN for each rainfall pulse.  

(d) To derive the S-curve, three S values for three time 

steps are required. The first S value, Sb1, is for the first 

storm pulse. Sb1can be estimated through the process (c) 

as above. The second S value, Sa1, is for the time after 

cessation of the first rainfall pulse. The third S value, Sb2, 

is for the second rainfall pulse. Sb2can be estimated using 

the same process to estimate Sb1.  

(e) Calculate the IETD between two rainfall storms. 

IETD is defined as a time period enabling the recovery of 

S through the downward movement of SMC and 

evaporation. IETD is calculated considering the time 

duration from the end of first rainfall storm to the first 

response of hydrograph arising from second rainfall storm 

(Fig. 4). This study assumes that any small rainfall 

amounts (less than 0.5 mm) occurring during the IETD 

has no effect on the volume of runoff flow and on the 

recovery of S.  

(f) Derive the relationship between a change of S values 

and the IETD. We calculate the change of S values using 

the difference of Sa1and Sb2. It indicates the change of 

two S values during the IETD enabling S to recover the 

volume to store SMC. Thus, we can derive the relationship 

between the change in S and the IETD. 

Based on the process explained as above, this study 

derived the relationship between the change of S values 

and the IETDs using 16 rainfall storm events. 

 

 
 

Fig. 4. Multiple pulse hydrograph illustrating inter-event 

time duration (IETD) and S definition. 
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2. Hydrograph Separation 

Hydrograph separation of multiple discharge peaks 

arising from a multi-pulse rainfall event requires 

calculation of direct runoff for each pulse. To separate the 

multiple hydrograph into its components (i.e. base and 

direct flows) we used two methods, N-day and spline 

interpolation method. The N-day method estimates the 

duration between a time-to-peak and the runoff flow 

recession at the end of a hydrograph; this is an adaptation 

of an equation like Eq. (9). 

 

0.2

daysN A                                (9) 

 

For the Napa River basin N-days is approximately 2.4 

days (58 hours), when substituting the drainage area 79.3 

mi2.  

Here, N  is the number of days runoff ceases after a 

storm, and A  is the drainage area of the application 

basin (mi2). 

Fig. 5 shows the process to separate a multiple peak 

hydrograph into its pulse components, described as 

follows: (1) Estimate the duration from a time to peak to 

the end time of runoff using N-Day method as in Fig. 5 (a). 

(2) Use the spline interpolation method to estimate the 

pulse discharges on the regression limb, as in Fig. 5(b). 

When applying the interpolation method, this study used 

the discharges for the regression limb and the end time of 

runoff flow from the N-Day method. Finally, the separated 

hydrograph is shown in Fig. 5 (C). A similar process is 

done for the remaining peaks. 

Fig. 6 shows the results of the hydrograph separation 

for the multi-pulse rainfall storms occurring between14 to 

18 Feb. 2011. During the storm, three rainfall pulses 

occurred sequentially, and the overall hydrograph is 

separated using the technique described above (Fig. 6). 

 

3. Event-Based SCS-CN Estimation 

 

A gridded CN for each storm event is estimated using 

an initial gridded CN map and a simplified optimization 

method as described at section 3.3. The initial gridded CN 

map was estimated from Table 2 with both minimum and 

maximum CN values to determine the difference of CNs 

depending on NRCS cover types. Fig. 7 shows the result 

of the initial gridded CN map and its corresponding S 

values. As shown in Fig. 7, the areal mean CN using the 

minimum values is 67; the maximum mean CN value is 81. 

In case of S, the maximum S is twice the minimum S 

because CN-S relationship is non-linear. Areal mean S 

using minimum CN is 134.3 mm and the areal mean S 

using maximum CN is 61.4 mm. These S values indicate 

the amount of SMC in which soil column could hold at 

any particular time. 

To estimate a gridded CN for each storm event, we used 

the initial gridded CN with minimum values from Table 1. 

The main reason for using the minimum values is that the 

CN values were not optimized by using initial gridded 

maximum CN. The non-optimized values resulted in a 

large difference between the volumes of a direct runoff 

from observed discharge and direct runoff amount. There 

has no difference when using minimum values for initial 

gridded CN map. 

 

Fig. 5. Process to separate a multiple hydrographs into single hydrograph. 

Fig. 6. Results of hydrograph separation. 
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(a) Runoff curve number. 

 
(b) Potential maximum retention. 

Fig. 7. Initial SCS-CN map and the corresponding values 

of potential maximum retention (S), (a) Runoff curve 

number, (b) Potential maximum retention. 

 

The resulting S values (Sb1, Sa1, Sb2 and a change of S) 

are tabulated in Table 2. This table also lists the total 

rainfall, direct runoff, estimated CNs and IETD for 

deriving the S-curve for each event. In Table 2, the first S 

value, Sb1, is estimated at the time just before the onset of 

the first rainfall. The second S value, Sa1, is representative 

of the time just after the first rainfall period ends. The 

third S value, Sb2, represents the first response of the 

second hydrograph arising from the second rainfall period. 

According to Table 2, the range of IETD for all 16 events 

is from 10 to 66 hours and the range of change of S is 

from -26.36 to +27.84 mm. 

 

4. S-Curve Results 

 

The S-curve is derived from the relationship between 

IETD and the change of S values as shown in Fig. 8. The 

S-curve is divided into three sections according to the 

recovery rate (mm/hr) of S. Root Mean Square Error 

(RMSE) is used as a criterion to decide a more apt linear 

regression line to estimate the recovery rate in each 

section. 

For the three sections, (1) the first section is in the range 

10 to 21 hours and exhibits a gradually recovering S (0.97 

mm/hr or 23.28 mm/day), (2) the second section is in the 

range 21 to 36 hours and exhibits a steeply recovering S 

(2.11 mm/hr or 50.64 mm/day), and (3) the third section is 

in the range 36 to 66 hours and exhibits a gradually 

decreasing recovery (0.34 mm/hr or 8.16 mm/day).  

During the recovery of S within a few days, other 

influencing factors include evaporation and the downward 

movement of SMC consisting of free water and tension 

water. Depending on the contribution of these factors in 

each section, the recovery rate could be different. 

Therefore, we conceptually analyzed the difference of S 

recovery phenomenon with these factors according to 

three sections and described the limitation of SCS-CN 

method because it regards a soil column as a single layer 

in accounting for the total value of S as described below. 

 

 

 Fig. 8. Potential maximum soil moisture retention. 

 

 Curve derived for the NAPA River basin, based on 16 

rainfall events. S-curve sections 1, 2, and 3 represent the 

gradually recovering S section, the rapid recovery of S 

section and the gradually decreasing recovery section, 

respectively. 

 

IV. CONCLUSION 

 

This study developed a potential maximum retention 

curve (S-curve) to estimate a time-variable SMC at hourly 

time-scales in order to improve continuous flood 

forecasting. The S-curve was based on a change of S for 

storm events with multiple peak hydrographs and an IETD 

criterion to identify independent storm events as defined 

in this study. The data were obtained for the Napa River 

basin, California and 16 rainfall events from 2011 to 2012 

were used in estimating the event-based S. The salient 

results of the study include: 
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The S-curve is derived from the relationship between 

IETD and a change of S values, and is divided into three 

sections according to the recovery rate (mm/hr) of S. 

For the three sections, (1) represents the period of 10-21 

hours and involves a gradually recovering S (0.97 mm/hr 

or 23.28 mm/day), (2) represents the period 21-36 hours 

and involves a period of steeply recovering S (2.11 mm/hr 

or 50.64 mm/day), and (3) is for the period36-66 hours 

and involves a gradually decreasing S recovery (0.34 

mm/hr or 8.16 mm/day).  

The first section has the retardation effect because SMC 

in upper soil zone is not yet saturated and not draining to 

lower zone. This results in temporary soil saturation in 

upper zone. The main reason for the flow retardation is the 

difference of movement rates between infiltration for the 

upper zone and percolation for the lower zone. When the 

infiltration rate is faster than percolation rate, the 

boundary layer between upper zone and lower zone could 

develop a temporary stagnant water layer when the 

retardation effect occurs. When the upper zone is saturated, 

it appears as if the total SMC is increased without 

additional rainfall during IETD, even though actual total 

SMC is decreased. 

The second S-curve section involves rapid recovery of 

S. It is the fastest rate among three sections because the 

movement of SMC to lower soil layers is occurring. The 

third section has a gradually decreasing S recovery rate. In 

this section, the movement of SMC is provisionally 

complete, and evaporation and outflow through interflow 

and subsurface drainage are dominant factors to the 

recovery of S. Thus, the S recovery rate is the slowest 

among three sections. The recovery rate of this section 

converges on a constant value close to zero. 

Based on these results, the S-curve could be used to 

determine hourly time-series of SMC. Also, this technique 

could be used to overcome the limitation of the SCS-CN 

methodology which regards the soil column as a single 

layer in accounting for the total value of S using S-curves 

in terms of continuous applicability for a long-term 

simulation. In addition, the S-curve method could provide 

a simple indicator of the state of SMC which could help 

for flood forecasting during a complex storm event with 

multiple rainfall pulses and hydrograph peaks. 
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