
Journal of Multimedia Information System VOL. 6, NO. 4, December 2019 (pp. 179-184): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2019.6.1.179

179

I. INTRODUCTION

 In order for virtual reality to be accepted as mainstream

media, it is necessary to increase the quantitative and

qualitative levels of the virtual reality contents. However,

planning, designing and implementing virtual reality

contents requires a lot of time and money with the help of

experts in various fields. In addition, development methods

that rely on existing computer programming languages such

as C ++ and C # have limitations in increasing content

productivity. As the virtual reality market grows, it is faced

with the demand for massive scalability along with the

quantitative demand, which is also very important in this

case.

In order to increase the productivity of contents, the

virtual reality and game industries have included authoring

tools based on various formalization tools in the production

engine. Examples include Mecanim in Unity and Blueprint

in Unreal Engine. Unity's Mecanim uses a hierarchical state

machine to create animations that change as objects change

their states, while Unreal's Blueprint is a massive extension

of the data flow diagram that allows you to visually

program the behavior of an object.

 Formalization tools such as state machines and data flow

diagrams can express the content in a more computational

form as compared to hard coding. Therefore, in order to

procedurally create an event or scenario of an object, the

adoption of such a formalization tool is an essential element.

For this reason, in this study, we propose a method for

procedurally generating the behavior of an object using

behavior tree.

Formalization tools such as state machines and data flow

diagrams can express the content in a more computational

form as compared to hard coding. Therefore, in order to

procedurally create an event or scenario of an object, the

adoption of such a formalization tool is an essential element.

For this reason, in this study, we propose a method for

procedurally generating the behavior of an object using

behavior tree.

II. RELATED WORKS

In the game industry, research on procedural content

generation (PCG) has been actively conducted to increase

Procedural Behavior Model using Behavior Tree in Virtual Reality

Applications

Jinseok Seo1*, Ungyeon Yang2

Abstract

This paper introduces a study for procedurally generating the behavior of objects in a virtual environment at runtime. This study was

initiated to enable the behavioral model of objects in virtual reality applications to evolve in response to user behavior at runtime. Our

approach is to describe the behavior of an object as a behavior tree, and to make a node of the behavior tree change to another type if a certain

condition is satisfied. We defined four types of node changes: "parameterized", "probabilistic", "alternate", and "variant". We experimented

with a virtual environment that includes a variety of simple procedural elements to explore the possibilities of our approach. As a result of

the implementation, if an optimization algorithm that can select and apply the optimized procedural elements in response to the user's behavior

is complemented, it is confirmed that more intelligent objects and agents can be implemented in virtual reality applications.

Key Words: Behavior tree, Behavior model, Procedural behavior, VR authoring.

Manuscript received November 28, 2019; Accepted December 20, 2019. (ID No. JMIS-19M-11-038)

Corresponding Author (*): Jinseok Seo, 176 Eomgwangno, Busanjin-gu, Busan 47340, Korea, +82-51-890-2712,

jsseo@deu.ac.kr.
1Game Engineering Major, Dong-eui University, Busan, Korea, jsseo@deu.ac.kr
2Electronics and Telecommunications Research Institute, Daejeon, Korea, uyyang@etri.re.kr

Procedural Behavior Model using Behavior Tree in Virtual Reality Applications

180

the productivity of content. PCG, first proposed at the IT

University of Copenhagen, is applied to a wide variety of

fields, including game level [1], object appearance [2],

game quest [3], and the like.

In this study, we tried to procedurally create the behavior

model of virtual objects. Similar attempts can be seen in the

case study for Non-Player Characters (NPCs). In [4], the

quest of NPC is generated procedurally based on

motivation, resources, and intimacy. In [5], FuSM (Fuzzy

State Machine) is improved to adapt NPC to user's response

through genetic algorithm and neural network.

As in this study, the problem of procedurally generating

events and scenarios of objects is very similar to the

planning problem in artificial intelligence. This is because

procedurally generating events requires finding a sequence

of actions to accomplish a particular purpose. A

representative example of the planning algorithm is SHOP2

[6]. SHOP2(Simple Hierarchical Ordered Planner 2) is a

planning system based on Hierarchical Task Network

(HTN). As another example of using HTN, [2] showed that

procedural scenario creation techniques using HTN in

lifesaving training games can generate various procedural

scenarios in an environment with the unexpected behavior

of obstacles.

The behavior tree is not only easy to implement in an

object-oriented language-based development environment,

but also has high scalability and reusability due to the

modular structure. In addition, because it is natural to apply

computational operations to its components, behavior tree

is well suited as a means for procedural generation. In [7],

they introduce the application of parameterization to

behavior tree and a tool called Topiary, which enables

authoring of behavior tree as a testbed for agent simulation.

An example of applying computational operations to

behavior tree is a case where a genetic algorithm is used to

optimize the components of the behavior tree [8]. There is

also an example of studies that allow NPCs or agents to

learn on their own using various techniques of

reinforcement learning [9].

II. SYSTEM OVERVIEW

The final goal of this study is to procedurally generate

the behavior model of an object at runtime. This final goal,

Procedural Behavior Engine, consists of two parts:

Behavior Simulator and Behavior Mediator. Behavior

Simulator analyzes and simulates the behavior model

formalized by behavior tree, and Behavior Mediator

evaluates the actions of a user and delivers the results to

Behavior Simulator.

Fig. 1. Overall structure of our final system, Procedural Behavior

Engine.

This paper focuses on the process of simulating

procedural behavior models in Behavior Simulator.

Behavior Mediator, which is responsible for evaluating the

results of user behavior and requesting appropriate

procedural behavior models, is left for further study. Fig. 1

shows the structure of our final system.

III. PROCEDURAL ELEMENTS OF

BEHAVIOR TREE

For an object model formalized by a behavior tree to

change procedurally at runtime, procedural elements must

be derived. Detailed procedural elements and generation

rules will be finalized when the Behavior Mediator

mentioned in Chapter 3 above is completed, but this paper

presents four types of procedural elements to examine the

possibilities of our idea. Currently derived elements are

“parameterized”, “stochastic”, “mutated” and “substitute”.

3.1. Parameterized Node

We first determined the parameterization introduced in

[7] as the first procedural element. In this study, we use

parameters for conditional task nodes and action task nodes

as in Fig. 2. If no parameter is passed from the outside, the

simulation is done with default parameters, which simulates

the same as fixed task nodes in the unparameterized

behavior tree. The Behavior Mediator will play a role in

optimizing these parameters.

Fig. 2. Parameterized conditional node and action node in

behavior tree.

3.2. Stochastic Node

Stochastic node selects one node to execute among its

child nodes. Currently, one node is selected by predefined

ratio, but later, the Behavior Mediator should select child

nodes by stochastic reasoning based on an inference engine

that will be developed later.

Journal of Multimedia Information System VOL. 6, NO. 4, December 2019 (pp. 179-184): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2019.6.1.179

181

Fig. 3. Stochastic action nodes in behavior tree.

3.3. Mutated Node

Fig. 4. Damage action node mutating at runtime.

Mutated Nodes change the values of various variables

(including parameters) of the node itself. Variables that can

change its values include instant, abort type, repeat forever,

and end of failure. The values of these variables of mutated

nodes are also currently set by random probabilities, but the

Behavior Mediator will determine this later.

3.4. Substitute Node

Substitute Node is a sub-tree that can replace some node

and a sub-tree rooted at it at runtime. After constructing a

pool of candidate sub-trees that can replace that node, select

an appropriate sub-tree from this pool and replace it with an

existing node.

Fig. 5. “Fire” action node substituting “Explode” action node at
runtime.

IV. IMPLEMENTATION RESULTS

4.1. Implementing Procedural Behavior Tree

Simulator

We implemented a simple procedural behavior tree

simulator to examine the possibilities of our idea. The

simulator acts as a component of a game object in the Unity

engine. We used Opsive's Behavior Designer [10] for the

basic simulation and authoring functions of the behavior

tree, which is very suitable for implementing our idea

because it is an asset that provides source code. Each node

of the behavior tree implemented in this study inherits from

the classes provided by the Behavior Designer.

There are quite a few modules we need to implement for

procedural element definition and simulation of behavior

tree (for example, the asset format for procedural elements,

an asset generator, an asset parser, etc.), but the most critical

part is the function to replace one node with another. Node

replacement is implemented in five stages such as "save

progress", "stop behavior tree simulation", "replace task

node", "resume behavior tree", and "restore progress".

Fig. 6. Behavior tree of a car for fire drill training system.

4.2. An Example Content: Fire Drill Simulation

To test the completed procedural behavior tree simulator,

we created a fire drill training content. This content is

implemented by modeling various environments and

objects that can cause a fire, and users are trained to cope

with unexpected situations in virtual environments.

In this paper, the implementation results will be

explained focusing on the car object that causes a fire due

to internal causes. Fig. 6 shows the behavior tree of the car

for the basic simulation. This behavior tree represents a

state in which the temperature inside the car’s engine room

rises when the simulation starts, but it operates safely while

the radiator is not damaged.

4.3. Implementing Procedural Elements

From the behavior tree of the car described above, we

derive some procedural elements that include

parameterized, stochastic, and substitute nodes. Among

them, parameterized and stochastic nodes are implemented

by inheriting from the class library of Opsive’s Behavior

Designer. Substitute sub-trees are implemented separately

from the main action tree, which is stored as a separate asset

so that it can be referred to as an external behavior tree

when needed. Fig. 7 shows the authoring tool window for

these external behavior trees, that is substitute sub-trees. In

this window, we specify which candidate in the sub-tree

pool can replace an existing node when certain conditions

are met.

Procedural Behavior Model using Behavior Tree in Virtual Reality Applications

182

Fig. 7. Authoring tool for procedural elements.

Fig.8 shows the two substitute sub-trees we implemented.

The left one is a sub-tree that first causes a fire in the engine

room to spreads to another part, and the right one describes

the situation where the fire spreads to the engine after the

fire occurs elsewhere first.

Fig. 8. Two substitute sub-trees of the car object’s behavior tree.

4.4. Simulation Results

Fig. 9 is a screenshot of our simulation results. As the

durability of the car decreases gradually, the radiator is

damaged. Then, the internal temperature rises rapidly due

to the coolant leak, causing a fire and an explosion.

Fig. 9. Screenshot of the fire drill training system.

V. CONCLUSION

In this paper, we showed a procedural method for

generating behavioral models of objects. We first

formalized the behavior model of an object into a behavior

tree and applicable procedural sub-tree were derived from

four predefined types of procedural elements. Then, based

on the behavior tree and the sub-tree, we showed that in a

commercial game engine Unity, the behavioral model of the

object can be varied according to specific conditions at

runtime to create various scenarios.

Acknowledgement

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. NRF-2019R1F1A1041854),

and by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded

by the Korea government (MSIP) (2019-0-01347,

Development of Realistic Fire Training Content

Technology to Help Simulate Fire Sites and Improve

Command Capabilities).

REFERENCES

 [1] Shaker, N., Yannakakis, G. N., & Togelius, J.,

“Digging deeper into platform game level design:

session size and sequential features,” in European

Conference on the Applications of Evolutionary

Computation, Springer, Berlin, Heidelberg, pp. 275-

284, 2012.

[2] Liapis, A., Yannakakis, G. N., & Togelius, J.,

“Adapting models of visual aesthetics for personalized

content creation,” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 4, no.

3, 213-228, 2012.

[3] Lee, Y. S., & Cho, S. B., “Context-aware petri net for

dynamic procedural content generation in role-playing

game,” IEEE Computational Intelligence Magazine,

vol. 6, no. 2, pp. 16-25, 2011.

[4] Jung, B., Cho, S., and Kang, S., “Procedural Quest

Generation by NPC in MMORPG,” Journal of Korea

Game Society, vol. 14, no. 1, pp. 19-28, 2014.

[5] Kwon J. and Jang J., “A Study on Implementation of

Intelligent Character for MMORPG using Genetic

Algorithm and Neural Networks,” Journal of Korea

Multimedia Society, vol. 10, no. 5, pp. 631-641, 2007.

[6] Nau D. S., Au T. C., Ilghami O., Kuter U., Murdock,

J. W., Wu D., and Yaman F., “SHOP2: An HTN

planning system,” Journal of artificial intelligence

research, vol. 20, pp. 379-404, 2003.

Journal of Multimedia Information System VOL. 6, NO. 4, December 2019 (pp. 179-184): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2019.6.1.179

183

[7] Shoulson A., Garcia F. M., Jones M., Mead R., and

Badler N. I., “Parameterizing behavior trees.,” in

International Conference on Motion in Games,

Springer, Berlin, Heidelberg, pp. 144-155, 2011.

[8] Lim C. U., Baumgarten R., and Colton S., “Evolving

behaviour trees for the commercial game DEFCON,” in

European Conference on the Applications of

Evolutionary Computation, Springer, Berlin,

Heidelberg, pp. 100-110, 2010.

[9] S Dey R., and Child C., “Ql-bt: Enhancing behaviour

tree design and implementation with q-learning,” in

2013 IEEE Conference on Computational Intelligence

in Games (CIG), pp. 1-8, 2013.

[10] https://opsive.com/solutions/ai-solution/, 2019

Authors

Jinseok Seo received his BS degree

from Konkuk University, Korea, in

1998 and an MS and a PhD degree in

the Department of Computer Science

and Engineering from Pohang

University of Science and Technology

(POSTECH), Korea, in 2000 and 2005,

respectively. In 2005, he joined the

Department of Game Engineering at Dong-eui University,

Korea where he is currently a professor.
 His research interests include virtual reality, augmented

reality, and game AI algorithms.

Ungyeon Yang received his BS

degree in computer science and

engineering from Chungnam
National University, Daejeon, Rep. of

Korea, in 1997. He received his MS

and PhD degrees from Pohang

University of Science and

Technology (POSTECH), Rep. of

Korea, in 2000 and 2003, respectively. Since 2003, he has

been a principal researcher with Electronics and

Telecommunications Research Institute (ETRI).

His research interests include wearable display,

information visualization, 3D user interfaces, human

factors, haptics and multimodal user interaction in the field

of virtual/mixed reality and ergonomics.

https://opsive.com/solutions/ai-solution/
https://opsive.com/solutions/ai-solution/

Procedural Behavior Model using Behavior Tree in Virtual Reality Applications

184

