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I. INTRODUCTION 

 Recently, there is a need to detect fast a network attack, 

especially in environments such as the cloud. Among the 

issues of cloud computing, the cloud is vulnerable to Denial 

of Service (DoS) attacks, which is the worst enemy for 

service availability [1]. In 2016, the Cloud Security 

Alliance performed a survey [2] consulting industry experts 

about their considerations and experience about security 

issues in cloud computing. According to the results, a list 

of 12 security concerns are the ones that worry more to the 

organizations and researchers, which included Denial of 

Service attacks. As a fact, Distributed Denial of Service 

(DDoS) attacks are growing each year. According to 

statistics published in the VeriSign Distributed Denial of 

Service Trends Report for Q1 2018, DDoS activity 

increased 53% compared to Q4 2017. Also, the 26% of 

mitigations in Verisign clients were to protect IT services 

and Cloud SaaS services [3]. Based on these statistics, DoS 

attacks in cloud can affect greatly to businesses. For this 

reason, DoS attacks should be detected fast [2]. In addition, 

it is important to mention that Cloud Computing services 

and APIs are mainly provisioned through HTTP protocol. 

This makes easier the access to services and resources in 

cloud and reduces costs. Yet, this results in cloud services 

being constant target of attacks that take advantage of 

vulnerabilities in the HTTP protocol such as HTTP DoS 

attacks [4].  

  In the reviewed solutions, we can see that there are many 

solutions that aim to detect DoS attack. Even if many 

solutions were proposed to detect these attacks, still they 

lack a good performance and high effectiveness. The fast 

detection represents a challenge as different kinds of DoS 

attacks are appearing and causing big damage in target 

systems [1] [24]. Among the reviewed solutions, researches 

such as [6], [7], [8], [15], [19], and [14], are solutions that 

implicate high complexity and it is not possible to include 

simple mechanisms that would prevent the analysis of all 

the data in real time in order to detect a DoS attack, meaning 

that it is difficult to reduce the DoS attack detection time. 

In case of the solutions in [9], [10], [11], [20], and [22], they 

applied machine learning algorithms that were trained with 

normal datasets and attack datasets. In those cases, instead 

of analyzing all real time data with the trained models, those 

solutions can apply methods to only consider suspicious 
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data in the analysis with the trained models, reducing 

detection time without affecting the efficiency. Specifically, 

about Slow Rate DoS attacks, the proposed systems in [12], 

[13], and [14] aimed to detect those attacks but they were 

demonstrated to be not efficient in all scenarios but only 

under specific attack conditions. Talking about Apache 

Hadoop, the solutions in [16], [17], [18], [19], [20], [21], 

[22], and [23] take advantage of the ability of this tool to 

manage big datasets, which is generally a main requirement 

in case of DoS attacks and in an environment like the cloud. 

As an additional advantage of Apache Hadoop shown in 

[20], [21], and [23], it includes libraries with already 

implemented useful tools such as machine learning 

algorithms.  

  Based on the previously described situation, this research 

proposes an attack-based filtering scheme for HTTP Slow 

Rate DoS attack detection in cloud environment, while 

addressing challenges in attack detection for cloud by 

facilitating the collection of distributed attack evidence, 

enabling a real time detection and managing adequately the 

big volume of data. 

 

II. RELATED WORK 

 

  In this section will include a review of previously 

researches. First, some works for DoS attack detection, the 

research in [9] presented a method that analyzes a list of 

traffic packet parameters and uses Naïve Bayes 

classification algorithm. On top of that, Information gain 

algorithm was applied to decrease the number of 

parameters considered by the algorithm. Additionally, the 

authors in [10] proposed the use of a back propagation 

neural network that was trained with data containing the 

CPU usage, Frame length and packet rate. Additionally, 

solutions for DoS attack detection in cloud were reviewed. 

The work in [14] proposed a solution for protecting the 

virtual machines (VM) in cloud by employing an Intrusion 

Detection System (IDS) located in the physical host of the 

VMs. The IDS was integrated of a packet sniffer, a feature 

extractor and a Support Vector Machine classifier (SVM). 

The results showed good accuracy except for the Slowloris 

attack. About Low Rate DoS attack detection, the work [12] 

studied the efficiency of spectral analysis technique to 

detect those attacks, because Low Rate DoS attacks have 

energy focused in lower frequencies. However, it was 

concluded that the efficiency of the method depends on the 

period in which the requests are sent. On the other hand, the 

research presented in [13] applied the Hilbert-Huang 

Transform (HHT) to the traffic data and then calculated the 

Pearson Correlation between the obtained HHT spectrum 

and the base HTT spectrum. The authors concluded the 

solution has a good performance only when the attacker 

sends traffic with a period which value is in a certain 

interval. 

  About the use of Hadoop for DoS attack detection, we 

can mention [19]. The proposed solution aimed to detect 

DoS attack with spoofed IP address. The collected network 

traffic was stored in HDFS and checked with MapReduce 

to know the authenticity of the source IP address. 

Additionally, a non-parametric CUSUM-based decision 

algorithm was used to confirm the attack. The experimental 

results showed that this solution was efficient in finding 

SYN, HTTP and DNS flooding attacks with IP spoofing. 

Another work in this category is [20]. Three classification 

algorithms were evaluated considering the volume of 

analyzed traffic, accuracy and delay of each one. Then, 

based on that, the fuzzy logic created rules that dictate the 

order in which those algorithms should be utilized with 

Apache Spark to identify an attack. Finally, works using 

Hadoop for security in cloud were reviewed. In [21], they 

proposed collecting cloud application data, using a sniffing 

module to only get useful information and store it in HDFS 

as Hive tables to apply queries and get features for machine 

learning models. In [22], an IDS system for cloud 

environment was proposed. The system depurated data with 

Hadoop MapReduce, identified suspicious traffic and 

determined the attack type by using the Random Forest 

algorithm. Finally, the work [23] proposed a system 

deployed in Apache Spark, which uses anomaly detection-

based and signature-based IDS sequentially in order to 

detect DDoS attacks.   

 

III. CLOUD COMPUTING 

 

 
Fig. 1. Cloud Computing characteristics, service delivery model 

and deployment models. 

 

  According to the National Institute of Standards and 

Technology (NIST) [25], Cloud computing can be 



Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online) 

http://doi.org/10.33851/JMIS.2020.7.2.125 

127                                                 

 

described as a new computing model that permits accessing 

through network in an ubiquitous way while offering a 

group of configurable computing resources that can be 

shared among clients, such as servers, applications, storage 

and services, and according to the user’s demand, so it is 

possible to be provisioned quickly with small intervention 

from the service provider. Following the previous 

definition, the NIST explained five characteristics of cloud 

computing: On-demand self-service, Broad network access, 

Resource pooling, Rapid elasticity, and Measured service. 

Additional to the definition of cloud computing, NIST 

described three main cloud service delivery models: 

Software as a Service (SaaS), Cloud Platform as a Service 

(PaaS), and Infrastructure as a Service (IaaS). Other 

concepts included in NIST document are the four cloud 

deployment models, which are defined according to who 

can use the cloud resources: Private cloud, Community 

cloud, Public cloud, and Hybrid. 

  Also, many security issues exist in cloud computing. The 

most common security concerns in cloud environment can 

be divided into four categories [26]: a) Related to the 

security of physical and software infrastructure of cloud 

service provider; b) Related to the integrity, confidentiality 

and privacy of data in cloud; c) Related to user 

authorization and authentication; and d) Related to the 

compliance of cloud providers with regulation. All these 

security problems can make cloud computing a vulnerable 

system. A common attack in the cloud is the Denial of 

Service attack, which is a threat that disturbs the data or 

service availability. Generally, these kinds of attacks are 

performed at the network/transport level or the application 

level. It is common that the malicious user begins to send 

huge quantity of requests to a service, so the cloud will 

provide more and more computational power or any 

required capability to keep the service up until exhausting 

all the resources [27] [28]. 

  Any malicious behavior performed in the cloud is 

challenging to detect and examine because of dynamism, 

scalability, and virtualized nature of the cloud [29]. In that 

complex environment, the collection and analysis of data 

stored in the cloud environment are difficult. Furthermore, 

privacy is becoming a big worry for cloud users. Referring 

to a list of 65 challenges related to cloud computing security 

that was published by NIST, the most typical difficulties are 

linked to the distributed nature of the cloud components and 

the high quantity of users who access to the cloud services. 

Under such conditions, any method selected by the cloud 

provider with the aim of protect the system represents a 

vital part when collecting and analyzing information [30]. 

The following list summarizes the main challenges in attack 

detection for cloud: Physical access, Live detection, 

Evidence collection, and Volume of data [26] [31][32] [33] 

[34]. 

 

IV. DENIAL-OF-SERVICE (DoS) 

ATTACKS 

 

  Denial of Service (DoS) attacks can be described as the 

type of attack that aims to prevent genuine users from using 

a network resource. DoS attacks are commonly done by 

continuously directing a big quantity of traffic or requests 

to the victim [35]. These attacks also affect the network 

bandwidth availability by corrupting network traffic. 

Additionally, it has become challenging to differentiate 

attack traffic from non-malicious user traffic due to the 

likeness between each other [36]. During a DoS attack there 

are two types of traffic: High-rate traffic, which looks like 

a scenario when many users access at the same time to a 

system but without malicious intentions (flash crowd); and 

Slow-rate traffic, which looks like authentic traffic. The 

most common classification of DoS attacks is based on the 

protocol level at which the attack works:  

a) Network/transport-level DoS attack: The attacker 

utilizes protocols in the network and transport layers 

to affect the target system. Usually performed with 

TCP, UDP, ICMP and DNS protocols [35] [5]. 

b) Application-level DoS attacks: In this kind of attack, 

the consumption of bandwidth is lower, but they are 

more difficult to recognize compared to the 

network/transport level attacks because they don’t 

have suspicious characteristics and look more like 

benign traffic. These attacks leverage specific 

features of application protocols such as HTTP, DNS, 

and SIP [35].  

  Between the Application-level attacks, we can mention 

the HTTP flooding attacks, which includes four categories 

that are described below: 

a) Slow Header attack: Also known as Slowloris attack 

due to the name of the tool used to perform this attack. 

In this case, partial HTTP requests (with incomplete 

headers) are sent to the target server, which constantly 

grow but never are closed. The result is all the 

available sockets being used and the web server being 

unreachable. 

b) HTTP fragmentation attack: This attack consists on 

establishing a HTTP connection with the target web 

server, dividing a non-malicious packet in fragments 

with smaller sizes and directing them slowly to the 

target. By doing this, the attacker can keep multiple 

connections open for a long period. Usually, the 

interval between each sent packet is defined 

according to the server time out. 

c) Slowpost attack: It is like the previous attack but in 

this case the attacker indicates the content-length 
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value in the first packet and then slowly sends HTTP 

post commands with small data. The web server 

usually waits until the value indicated in the content-

length field is reached. 

d) Slowreading attack: The attacker reads the server’s 

response slowly by indicating a smaller receive 

window-size than the victim web server’s send buffer. 

In this case, the TCP protocol keeps open connections 

even when there is no data transferred so the attacker 

can obligate the victim to retain many connections 

open. 

 

V. APACHE HADOOP 

 

  Apache Hadoop [37] is an open-source project with the 

purpose of offering software that can be used as a reliable, 

scalable and distribute computing tool. This project 

includes the Apache Hadoop software library, which can be 

understood as a framework that permits distributed 

processing of big data sets running in groups of computers, 

based on simple programming models. Those computers 

have computation and storage as available resources; 

however, since the machines can have failures, the Hadoop 

software library is able to detect and handle them, 

guaranteeing high availability. This project also includes 

other components which will be described since they were 

useful tools in the process of developing the solution 

presented in this research. 

  Hadoop Distributed File System (HDFS) [38] is a 

distributed file system and has as a main attribute the 

possibility of accessing to it with high throughput. HDFS 

was thought as a system able to function on average 

computers and hardware components. The main 

characteristics of HDFS are fault tolerant, large files 

management, and computation closer to data. HDFS 

possess an architecture based on master and slave roles. 

Usually, an HDFS cluster contains one NameNode and 

various DataNodes. A NameNode is the component that 

plays the master role by controlling the file system 

namespace, monitoring the file access and keeping other 

metadata. It is also in charge of operations such as opening, 

closing and renaming files or directories. On the other hand, 

a DataNode is limited to control the data contained in its 

own machine. Following the slave role, it attends any user 

request to read or write data. Like traditional file systems, 

there is a namespace that permits the storage of user data in 

files. However, even if the user sees the file under one 

directory, the stored file is divided in blocks which are 

saved in a group of DataNodes. The mapping between 

blocks and DataNodes is managed by the NameNode. In 

this scenario, the creation or deletion of a data block is done 

by the DataNodes according to the NameNode 

requirements. Also, the important security features of 

HDFS are re-replication and data integrity. 

  In Hadoop environment there is other important 

component named Apache Spark [39]. It can be described 

as a quick engine for computation of stored information in 

Hadoop, which can be used to build application such as 

Extract-Transform-Load models, machine learning, stream 

processing, and graph computation. Usually, Spark is 

deployed in a cluster of machines which makes it fast and 

useful for many purposes. It is considered a group of 

applications running independently on a group of 

computers. Each application is controlled and managed by 

a SparkContext object, which should be created in the main 

program of the application and works as a driver program 

and coordinates with a cluster manager, like Apache Mesos 

or Hadoop Yarn. By doing this, the application controlled 

by the SparkContext can get some computation power and 

memory. After the assignation of resources, the cluster 

manager transfers the application code to the executors so 

the SparkContext can entrust tasks to them. Another 

characteristic that should be highlighted is the availability 

of high-level APIs written in Java, Scala, Python and R, 

which permit the development of applications in Spark. 

Among the supported tools, we can mention Spark SQL, 

MLlib, GraphX and Spark Streaming. Spark Streaming is a 

tool considered an extension of the Spark core that permits 

the processing of data streams being generated in real time. 

This tool can be extended, allows high throughput and is 

resistant to system faults. The data streams can come from 

diverse sources including Kafka, Flume and general TCP 

sockets. 

  Apache Flume [40] can be described as a distributed 

system that collects, aggregates and transfers big amount of 

data from numerous diverse sources to a centralized storage. 

It can integrate with HDFS and keep the main concepts of 

Hadoop such as reliability and availability. Commonly, 

Apache Flume is used as a tool for log data collection and 

aggregation. However, Flume can also work with different 

types of data like network traffic data, data from social 

media and email messages. Flume manage all the processes 

of collection, aggregation and transference of data from 

origin to destination by using a process called Agent. Also, 

the data flow being transferred is represented in many 

Events, each one of them carrying a byte payload and other 

optional attributes. Inside the agent, there are three main 

components: Source, Channel and Sink. Among the 

characteristics of Apache Flume, it is important to mention 

the high reliability that possess. Another important feature 

of Apache Flume is the recoverability in case of failure. 
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VI. PROPOSED SOLUTION 

 

  The proposed solution is composed of the process of 

collection and filtering traffic packets data in order to take 

in consideration only the packets related to a request 

flooding HTTP DoS attack and the packets related to a Slow 

Request/Response HTTP DoS attack. These Slow Rate 

DoS attacks become more effective if the attackers make 

use of reflectors or botnets that replicate the same behavior 

of each attack, resulting in the exhaustion of server 

resources. For this reason, it is important to mention that the 

proposed solution can identify the beginning of these 

attacks, so it permits a rapid detection and helps the cloud 

administrator to take measures in order to mitigate the 

attack. Additionally, another important point is that in this 

case the implementation also permits finding possible 

flooding attacks that uses other protocols such as TCP, 

UDP or ICMP.  

  First, it is required as a preliminary step the collection of 

traffic packets to obtain traffic packets data in a normal state 

(without attacks), which will be used to make a comparison 

with the real time traffic. In this case, the data collection 

should be done during a year since there are fluctuations in 

the network according to the season. Moreover, the number 

of traffic packets per second is calculated and stored in 

HDFS Spark can be used for this preliminary step. After 

that, Flume will collect text files that contain the traffic 

packets data generated in real time. The Flume 

configuration file in this process is using the source TailDir 

and the sink Avro Sink. The mentioned text files are the 

result of running tshark and getting the packets fields of 

date and time, source IP address, source port, destination IP 

address, destination port, protocol, frame length, HTTP 

method, window size, and other packet information (field 

col.Info), considering only packets coming to the web 

server. 

  After the collection with Flume, the traffic packet data is 

analyzed with Spark Streaming to apply a filter, get data 

only from suspicious traffic packets and store it in HDFS. 

The filtering process was implemented with python and 

considers the conditions explained in section 2.4. The steps 

are explained below: 

a) Read the file containing information about the 

number of packets per second in a normal state 

b) Splits the traffic packet information in order to get the 

packet fields (date and time, IP address, etc.) 

c) Calculate the number of packets per second and 

checks if at least one of the following conditions 

matches: 

 The number of packets per second coming in real 

time is higher than the number in a normal state in 

at least a specified threshold ttime. It is important to 

Fig. 2 The proposed solution flow. 
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mention that this first condition permits finding 

packets suspicious to be part of a request flooding 

DoS attack. 

 The protocol is HTTP, the method is POST and 

the frame size is less than 1000 bytes. This is 

considered as a threshold tsize that can be modified 

by the cloud administrator. 

 The protocol is TCP, the window size is 0 and the 

packet information (col.Info) includes the text 

“ZeroWindow”. 

 The protocol is HTTP but the packet information 

(col.Info) indicates the message “non-HTTP” 

since the HTTP headers are not complete. 

d) The results of the filtering step are stored in HDFS. 

About the threshold used in this process, the definition of 

ttime is: 0.5 * (max_packets). Following the 

recommendations in [41], the maximum number of requests 

per second calculated in normal state should be multiplied 

by a number between 1 and 5 to set the maximum number 

of packets. But, in our system the threshold is calculated as 

the difference between the number of requests in real time 

and the number of requests in normal state. The calculation 

in detail would be ttime = 1.5 * (max_req) – (max_req) = 0.5 

* (max_req).  

  Finally, after the filtering process, the suspicious packets 

data is read from HDFS and analyzed by Spark. The 

implementation of this last step was done with python and 

the FP-Growth algorithm was employed. Directories 

including packet data from the last 30 minutes are retrieved 

from HDFS and, since the FP-Growth algorithm analysis is 

centered in transactions composed of a group of items, the 

packet fields are considered as the items of a transaction. 

However, only the following fields were in this final 

analysis: source IP address, source port, destination IP 

address, destination port, protocol, frame length, HTTP 

method, window size and the packet information from 

col.Info. Based on this, the data is analyzed in periods of 5 

minutes to find the most frequent item sets including the 

mentioned packet fields. 

  Still, it is important to consider the FP-Growth algorithm 

issue about the results that can contain sizes different from 

the original number of packet fields. For this reason, the 

python file that implements this final process only results 

in item sets that have more than 5 fields and have a 

Scenario 

Memory Usage (GB) CPU Usage (%) Time (seconds) 
# of FP-Growth 

Results Storage FP-Growth Storage FP-

Growth 

Storage FP-

Growth 

Normal log With Filter 9.9 9.9 73 53 17 166 68 

Without Filter 9.9 10.7 52 63 9 189 648 

Attack log With Filter 11.6 11.8 69 48 26 392 19063  

(102 false positives) 

Without Filter 11.1 12.6 28 61 8 474 20392  

(987 false positives) 

Scenario 

Memory 

Usage  

(GB) 

CPU Usage 

(%) 

Time to get FP-

Growth 

analysis results  

(seconds) 

# of Stored Logs 
# of FP-Growth 

Results 

Normal log With Filter 12.9 79 79 31  

(from 90872 in 6 

minutes) 

25 

Without 

Filter 

12.1 61 68 8699  

(in 2 minutes) 

45 

Attack log With Filter 12.5 72 80 1055  

(from 15607) 

180  

(2 false positives) 

Without 

Filter 

12.5 64 80 11893 343  

(16 false positives) 

Table 1. Tested Scenarios and Results in terms of Memory Usage, CPU Usage and Time with the process phases run sequentially. 

 

Table 2. Tested Scenarios and Results in terms of Memory Usage, CPU Usage and Time with the process phases are run simultaneously. 
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frequency higher than 1. Finally, since the number of results  

can be large even after doing the mentioned consideration, 

the results are sorted by frequency in decreasing order and, 

since there are two types of attacks identified (flooding and 

slow rate attacks), the results with high frequency are 

included in the final results to be stored in HDFS, same as 

the results with a frequency between 2 and 30. This second 

condition comes from the definition of slow rate DoS attack 

that mentions that the number of packets is small, so in this 

case 30 packets during 5 minutes may be understood as 1 

packet received every 10 seconds that is a slow rate. 

 

 VII. TESTS AND RESULTS 

   

  All the testing was performed in a Docker container with 

Hortonworks Data Platform Sandbox version 2.6.5.0, 

which includes Spark 2.3.0, Flume 1.5.2 and Python 2. The 

container was deployed in a host machine running the 

operating system Linux with 64 GB of RAM memory and 

a CPU Intel i3 7350K 4.20 GHZ. The monitored metrics 

were Memory Usage, CPU usage and Processing Time. For 

comparative purposes, the process of the proposed solution 

was divided in two main phases: 

a) Storage Phase: Includes log collection, filtering and 

suspicious logs storage. 

b) FP-Growth Phase: Includes FP-Growth algorithm 

analysis and results storage 

  Tests of scenarios with and without the filtering scheme 

were performed with traffic packet data generated by using 

Tshark. In case of the normal traffic, it was composed of 

incoming packets to the docker container. In case of the 

attack traffic, it was generated by using the tool Slowloris 

for Slow Header DoS attack, a python file sending requests 

that simulate Slow Body DoS attack and the tool 

SlowHTTPTest for Slow Read DoS attacks. Additionally, 

the command ping was used to add traffic. 

  According to [42], there are some performance 

evaluation parameters that are important since they show 

how proficient is the proposed solution and it is possible to 

compare it with others. In this work, we will consider the 

false positive ratio, which is calculated as the ratio of 

legitimate packets classified as malicious and the total of 

legitimate packets; the performance of the system, which is 

related to the resources used to run the system (memory, 

CPU usage, time); and implementation complexity. 

  The first test was running both phases (Storage and FP-

Growth) sequentially. The number of total packets in 

normal traffic were 15318 in 8 minutes. On the other hand, 

the number of total packets during attacks were 55388 for 

16 minutes. The results of this first test are shown in the 

Table 1. In case of the normal traffic, the memory usage 

when using a filter and without filter are the same during 

the storage, while the memory is higher when not using a 

filter during the FP-Growth phase. About the CPU usage, it 

is higher when using a filter during storage, but it is lower 

when using a filter during FP-Growth phase. About the time, 

the use of the filter permits to process the data in a shorter 

period of 183, compared to the 198 seconds without any 

filter. Also, with filter the number of FP-Growth results are 

68, which is much smaller compared to the 648 results in 

case of not using filter. Even if all the results represent false 

positives, the use of a filter permits obtaining less false 

positives. In case of the attack traffic, during the storage 

phase the memory usage with filter is higher in 0.5 GB 

compared to the scenario without filter, while during the 

FP-Growth phase it was the opposite since the memory 

usage with filter was less in 0.8 GB compared to the 

scenario without filter. About CPU usage, the situation is 

similar: during the Storage phase it is higher when using a 

filter but lower during the FP-Growth phase. About the time, 

when using a filter, the time is 64 seconds less compared to 

the scenario without filter. Additionally, the difference 

between the numbers of FP-Growth results in both 

scenarios is about 1300, but the use of a filter obtains 102 

false positives from 19063 results, which is less compared 

to the 987 from 20392 results in the scenario without filter. 

If we compare to the false positive rate of [43], which is in 

the range of 0.15 and 0.30, our system has a much lower 

false positive rate. The number of legitimate packets 

identified as malicious can be a maximum of 102 and the 

legitimate ones are 45000, so the false positive rate is 

0.0023, showing higher accuracy. Still, this is in the ideal 

situation of only having slow rate attacks and no other 

attacks with similar characteristics. 

  As second tests, the process was run with both phases 

(Storage and FP-Growth) simultaneously performed and 

traffic packet data created in real time with Slow 

Request/Response HTTP DoS attack and without any 

attack. In case of the normal traffic, with the filter the 

number of generated packets was 90872 in 6 minutes, while 

without filter the number was 8699 in 2 minutes. In case of 

the attack traffic, with the filter the number of generated 

packets was 15607 in 2 minutes, while without filter the 

number was 11893 in 2 minutes. The results of these tests 

are shown in Table 2. In this case, the metrics also include 

the Memory Usage, the CPU Usage and the time to get the 

first FP-Growth algorithm results. With the normal traffic, 

the scenario with filter uses more memory and CPU with a 

12.9 GB and 79% respectively, compared to the scenario 

without filter which uses 12.1 GB of memory and 61% of 

CPU. About the time, the scenario with filter takes 11 

seconds more compared to scenario without filter. This can 
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be explained because the packet flow in each scenario was 

captured by using the same command tshark; however, 

since the moments were different, it is a probability that the 

number of incoming packets decreased when the filter was 

not used. In the scenario with filter, 31 packets were found 

suspicious and the FP-Growth results were 25 records; 

while, in the scenario without filter all the captured packets 

were stored in HDFS and the FP-Growth results were 45. 

This shows that, even if the traffic load was higher during 

the use of the filter and the FP-Growth results don’t 

correspond to an attack, the detection is more precise 

compared to the scenario without filter. With the attack 

traffic, the memory usage for both scenarios is 12.5 GB, but 

the CPU usage in the scenario with filter is higher in 8% 

compared to the scenario without filter. With the filter, 

1055 packets were found suspicious from the total of 15607. 

About the time, in both cases it takes 80 seconds to get the  

FP-Growth algorithm results. However, with filter the 

number of FP-Growth results is 180 including only 2 false 

positive, while without filter the number is 343 results 

including 16 false positives. This emphasizes the increased 

precision when using the filter. 

  Finally, tests with different number of generated packets 

were performed to analyze the relation between the 

processing time and the traffic load. In case of the normal 

traffic, the sizes for small, medium and large traffic load 

contained 15318 packets in 8 minutes, 31988 packets in 17 

minutes and 44951 in 24 minutes respectively. In case of 

the attack traffic, the sizes for small, medium and large 

traffic load were 24043 packets in 9 minutes, 55388 packets 

in 16 minutes and 84152 packets in 16 minutes respectively. 

The tests were performed with and without filter, and the 

storage and the FP-Growth phases were run sequentially, so 

the considered processing time is the addition of each phase 

processing time. In the Fig. 3 the graph shows the results of 

tests with normal traffic. It shows that the difference in 

processing times in the scenarios with and without filter is 

not big, but it increases as the traffic load increases. On the 

other hand, the Fig. 4 shows the results of test with attack 

traffic. Even if the difference in processing times is small 

with little traffic load, the difference increases faster when 

the traffic load increases, compared to the case of normal 

traffic. This graph demonstrates that the filter is more 

beneficial in case of an attack since it decreases the time of 

detection. 

  About the complexity of the proposed solution, we can 

see that, as explained in the previous section, simple 

conditions were applied to identify suspicious packets and 

then to classify them as malicious or not. For this reason, 

we can affirm that our proposed solution has low 

complexity, compared to reviewed works such as [6], [7], 

[8], [14], [15], and [19]. 

 

 

VIII. CONCLUSION 

 

  In this research, an attack-based filtering scheme was 

proposed as a component for HTTP Slow Rate DoS attack 

detection in cloud environment by using Apache Hadoop 

components such as Apache Flume, Apache Spark and 

Hadoop Distributed File System. To evaluate the 

performance of the scheme, a complete attack detection 

system was implemented and tests with filter and without 

filter were performed. The results of testing the system in a 

real scenario simulation, generating data in real time and 

analyzing as created, showed that by using the filtering 

scheme the efficiency increased in 12 % when detecting 

Slow Rate DoS attacks by analyzing traffic packets data, 

due to the elimination of traffic with normal behavior 

preventing the DoS detection algorithm to consider them as 
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an attack. 

  In addition, the use of Apache Flume as a collection tool 

facilitated the distributed data collection in cloud 

environment, preventing data loss which was confirmed in 

the scenario without filtering when all the traffic packets 

data was stored in HDFS. The data loss prevention was 

possible due to the configuration offered by Apache Flume, 

which permits continuing with the collection even if Flume 

stops. Another important remark is that the reduction in 

time thanks to the filtering component permits the creation 

of almost real time detection system for HTTP Slow Rate 

DoS attacks, while not affecting negatively the efficiency. 

This means too that the detection can be done without 

affecting the normal functioning of the cloud since it is not 

necessary to stop it to perform any analysis.  

Finally, it was confirmed that the use of Apache Hadoop 

permits the analysis of big datasets such as traffic packets 

data that is generated during a HTTP Slow Rate DoS attack, 

which was possible by applying its main characteristic of 

performing distributed processing, even during heavy 

attacks such as the generated during the tests with high 

traffic load. 
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