
Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.2.125

125

I. INTRODUCTION

 Recently, there is a need to detect fast a network attack,

especially in environments such as the cloud. Among the

issues of cloud computing, the cloud is vulnerable to Denial

of Service (DoS) attacks, which is the worst enemy for

service availability [1]. In 2016, the Cloud Security

Alliance performed a survey [2] consulting industry experts

about their considerations and experience about security

issues in cloud computing. According to the results, a list

of 12 security concerns are the ones that worry more to the

organizations and researchers, which included Denial of

Service attacks. As a fact, Distributed Denial of Service

(DDoS) attacks are growing each year. According to

statistics published in the VeriSign Distributed Denial of

Service Trends Report for Q1 2018, DDoS activity

increased 53% compared to Q4 2017. Also, the 26% of

mitigations in Verisign clients were to protect IT services

and Cloud SaaS services [3]. Based on these statistics, DoS

attacks in cloud can affect greatly to businesses. For this

reason, DoS attacks should be detected fast [2]. In addition,

it is important to mention that Cloud Computing services

and APIs are mainly provisioned through HTTP protocol.

This makes easier the access to services and resources in

cloud and reduces costs. Yet, this results in cloud services

being constant target of attacks that take advantage of

vulnerabilities in the HTTP protocol such as HTTP DoS

attacks [4].

 In the reviewed solutions, we can see that there are many

solutions that aim to detect DoS attack. Even if many

solutions were proposed to detect these attacks, still they

lack a good performance and high effectiveness. The fast

detection represents a challenge as different kinds of DoS

attacks are appearing and causing big damage in target

systems [1] [24]. Among the reviewed solutions, researches

such as [6], [7], [8], [15], [19], and [14], are solutions that

implicate high complexity and it is not possible to include

simple mechanisms that would prevent the analysis of all

the data in real time in order to detect a DoS attack, meaning

that it is difficult to reduce the DoS attack detection time.

In case of the solutions in [9], [10], [11], [20], and [22], they

applied machine learning algorithms that were trained with

normal datasets and attack datasets. In those cases, instead

of analyzing all real time data with the trained models, those

solutions can apply methods to only consider suspicious

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service

Attack Detection in Cloud Environment

 Janitza Nicole Punto Gutierrez1, Kilhung Lee1*

Abstract

Nowadays, cloud computing is becoming more popular among companies. However, the characteristics of cloud computing such as a

virtualized environment, constantly changing, possible to modify easily and multi-tenancy with a distributed nature, it is difficult to perform

attack detection with traditional tools. This work proposes a solution which aims to collect traffic packets data by using Flume and filter them

with Spark Streaming so it is possible to only consider suspicious data related to HTTP Slow Rate Denial-of-Service attacks and reduce the

data that will be stored in Hadoop Distributed File System for analysis with the FP-Growth algorithm. With the proposed system, we also

aim to address the difficulties in attack detection in cloud environment, facilitating the data collection, reducing detection time and enabling

an almost real-time attack detection.

Key Words: Cloud computing, Denial-of-Service Attack, Slow Rate DoS Attack.

Manuscript received May 27, 2020; Revised June 15, 2020; Accepted June 17, 2020. (ID No. JMIS-20M-05-015)

Corresponding Author (*): Kilhung Lee, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea, 02-970-6704,

khlee@seoultech.ac.kr.
1Dept. of Computer Science and Engineering, Seoul National University of Science and Technology, Korea,

jnpunto.92@gmail.com, khlee@seoultech.ac.kr

mailto:jnpunto.92@gmail.com
mailto:khlee@seoultech.ac.kr

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

126

data in the analysis with the trained models, reducing

detection time without affecting the efficiency. Specifically,

about Slow Rate DoS attacks, the proposed systems in [12],

[13], and [14] aimed to detect those attacks but they were

demonstrated to be not efficient in all scenarios but only

under specific attack conditions. Talking about Apache

Hadoop, the solutions in [16], [17], [18], [19], [20], [21],

[22], and [23] take advantage of the ability of this tool to

manage big datasets, which is generally a main requirement

in case of DoS attacks and in an environment like the cloud.

As an additional advantage of Apache Hadoop shown in

[20], [21], and [23], it includes libraries with already

implemented useful tools such as machine learning

algorithms.

 Based on the previously described situation, this research

proposes an attack-based filtering scheme for HTTP Slow

Rate DoS attack detection in cloud environment, while

addressing challenges in attack detection for cloud by

facilitating the collection of distributed attack evidence,

enabling a real time detection and managing adequately the

big volume of data.

II. RELATED WORK

 In this section will include a review of previously

researches. First, some works for DoS attack detection, the

research in [9] presented a method that analyzes a list of

traffic packet parameters and uses Naïve Bayes

classification algorithm. On top of that, Information gain

algorithm was applied to decrease the number of

parameters considered by the algorithm. Additionally, the

authors in [10] proposed the use of a back propagation

neural network that was trained with data containing the

CPU usage, Frame length and packet rate. Additionally,

solutions for DoS attack detection in cloud were reviewed.

The work in [14] proposed a solution for protecting the

virtual machines (VM) in cloud by employing an Intrusion

Detection System (IDS) located in the physical host of the

VMs. The IDS was integrated of a packet sniffer, a feature

extractor and a Support Vector Machine classifier (SVM).

The results showed good accuracy except for the Slowloris

attack. About Low Rate DoS attack detection, the work [12]

studied the efficiency of spectral analysis technique to

detect those attacks, because Low Rate DoS attacks have

energy focused in lower frequencies. However, it was

concluded that the efficiency of the method depends on the

period in which the requests are sent. On the other hand, the

research presented in [13] applied the Hilbert-Huang

Transform (HHT) to the traffic data and then calculated the

Pearson Correlation between the obtained HHT spectrum

and the base HTT spectrum. The authors concluded the

solution has a good performance only when the attacker

sends traffic with a period which value is in a certain

interval.

 About the use of Hadoop for DoS attack detection, we

can mention [19]. The proposed solution aimed to detect

DoS attack with spoofed IP address. The collected network

traffic was stored in HDFS and checked with MapReduce

to know the authenticity of the source IP address.

Additionally, a non-parametric CUSUM-based decision

algorithm was used to confirm the attack. The experimental

results showed that this solution was efficient in finding

SYN, HTTP and DNS flooding attacks with IP spoofing.

Another work in this category is [20]. Three classification

algorithms were evaluated considering the volume of

analyzed traffic, accuracy and delay of each one. Then,

based on that, the fuzzy logic created rules that dictate the

order in which those algorithms should be utilized with

Apache Spark to identify an attack. Finally, works using

Hadoop for security in cloud were reviewed. In [21], they

proposed collecting cloud application data, using a sniffing

module to only get useful information and store it in HDFS

as Hive tables to apply queries and get features for machine

learning models. In [22], an IDS system for cloud

environment was proposed. The system depurated data with

Hadoop MapReduce, identified suspicious traffic and

determined the attack type by using the Random Forest

algorithm. Finally, the work [23] proposed a system

deployed in Apache Spark, which uses anomaly detection-

based and signature-based IDS sequentially in order to

detect DDoS attacks.

III. CLOUD COMPUTING

Fig. 1. Cloud Computing characteristics, service delivery model

and deployment models.

 According to the National Institute of Standards and

Technology (NIST) [25], Cloud computing can be

Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.2.125

127

described as a new computing model that permits accessing

through network in an ubiquitous way while offering a

group of configurable computing resources that can be

shared among clients, such as servers, applications, storage

and services, and according to the user’s demand, so it is

possible to be provisioned quickly with small intervention

from the service provider. Following the previous

definition, the NIST explained five characteristics of cloud

computing: On-demand self-service, Broad network access,

Resource pooling, Rapid elasticity, and Measured service.

Additional to the definition of cloud computing, NIST

described three main cloud service delivery models:

Software as a Service (SaaS), Cloud Platform as a Service

(PaaS), and Infrastructure as a Service (IaaS). Other

concepts included in NIST document are the four cloud

deployment models, which are defined according to who

can use the cloud resources: Private cloud, Community

cloud, Public cloud, and Hybrid.

 Also, many security issues exist in cloud computing. The

most common security concerns in cloud environment can

be divided into four categories [26]: a) Related to the

security of physical and software infrastructure of cloud

service provider; b) Related to the integrity, confidentiality

and privacy of data in cloud; c) Related to user

authorization and authentication; and d) Related to the

compliance of cloud providers with regulation. All these

security problems can make cloud computing a vulnerable

system. A common attack in the cloud is the Denial of

Service attack, which is a threat that disturbs the data or

service availability. Generally, these kinds of attacks are

performed at the network/transport level or the application

level. It is common that the malicious user begins to send

huge quantity of requests to a service, so the cloud will

provide more and more computational power or any

required capability to keep the service up until exhausting

all the resources [27] [28].

 Any malicious behavior performed in the cloud is

challenging to detect and examine because of dynamism,

scalability, and virtualized nature of the cloud [29]. In that

complex environment, the collection and analysis of data

stored in the cloud environment are difficult. Furthermore,

privacy is becoming a big worry for cloud users. Referring

to a list of 65 challenges related to cloud computing security

that was published by NIST, the most typical difficulties are

linked to the distributed nature of the cloud components and

the high quantity of users who access to the cloud services.

Under such conditions, any method selected by the cloud

provider with the aim of protect the system represents a

vital part when collecting and analyzing information [30].

The following list summarizes the main challenges in attack

detection for cloud: Physical access, Live detection,

Evidence collection, and Volume of data [26] [31][32] [33]

[34].

IV. DENIAL-OF-SERVICE (DoS)

ATTACKS

 Denial of Service (DoS) attacks can be described as the

type of attack that aims to prevent genuine users from using

a network resource. DoS attacks are commonly done by

continuously directing a big quantity of traffic or requests

to the victim [35]. These attacks also affect the network

bandwidth availability by corrupting network traffic.

Additionally, it has become challenging to differentiate

attack traffic from non-malicious user traffic due to the

likeness between each other [36]. During a DoS attack there

are two types of traffic: High-rate traffic, which looks like

a scenario when many users access at the same time to a

system but without malicious intentions (flash crowd); and

Slow-rate traffic, which looks like authentic traffic. The

most common classification of DoS attacks is based on the

protocol level at which the attack works:

a) Network/transport-level DoS attack: The attacker

utilizes protocols in the network and transport layers

to affect the target system. Usually performed with

TCP, UDP, ICMP and DNS protocols [35] [5].

b) Application-level DoS attacks: In this kind of attack,

the consumption of bandwidth is lower, but they are

more difficult to recognize compared to the

network/transport level attacks because they don’t

have suspicious characteristics and look more like

benign traffic. These attacks leverage specific

features of application protocols such as HTTP, DNS,

and SIP [35].

 Between the Application-level attacks, we can mention

the HTTP flooding attacks, which includes four categories

that are described below:

a) Slow Header attack: Also known as Slowloris attack

due to the name of the tool used to perform this attack.

In this case, partial HTTP requests (with incomplete

headers) are sent to the target server, which constantly

grow but never are closed. The result is all the

available sockets being used and the web server being

unreachable.

b) HTTP fragmentation attack: This attack consists on

establishing a HTTP connection with the target web

server, dividing a non-malicious packet in fragments

with smaller sizes and directing them slowly to the

target. By doing this, the attacker can keep multiple

connections open for a long period. Usually, the

interval between each sent packet is defined

according to the server time out.

c) Slowpost attack: It is like the previous attack but in

this case the attacker indicates the content-length

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

128

value in the first packet and then slowly sends HTTP

post commands with small data. The web server

usually waits until the value indicated in the content-

length field is reached.

d) Slowreading attack: The attacker reads the server’s

response slowly by indicating a smaller receive

window-size than the victim web server’s send buffer.

In this case, the TCP protocol keeps open connections

even when there is no data transferred so the attacker

can obligate the victim to retain many connections

open.

V. APACHE HADOOP

 Apache Hadoop [37] is an open-source project with the

purpose of offering software that can be used as a reliable,

scalable and distribute computing tool. This project

includes the Apache Hadoop software library, which can be

understood as a framework that permits distributed

processing of big data sets running in groups of computers,

based on simple programming models. Those computers

have computation and storage as available resources;

however, since the machines can have failures, the Hadoop

software library is able to detect and handle them,

guaranteeing high availability. This project also includes

other components which will be described since they were

useful tools in the process of developing the solution

presented in this research.

 Hadoop Distributed File System (HDFS) [38] is a

distributed file system and has as a main attribute the

possibility of accessing to it with high throughput. HDFS

was thought as a system able to function on average

computers and hardware components. The main

characteristics of HDFS are fault tolerant, large files

management, and computation closer to data. HDFS

possess an architecture based on master and slave roles.

Usually, an HDFS cluster contains one NameNode and

various DataNodes. A NameNode is the component that

plays the master role by controlling the file system

namespace, monitoring the file access and keeping other

metadata. It is also in charge of operations such as opening,

closing and renaming files or directories. On the other hand,

a DataNode is limited to control the data contained in its

own machine. Following the slave role, it attends any user

request to read or write data. Like traditional file systems,

there is a namespace that permits the storage of user data in

files. However, even if the user sees the file under one

directory, the stored file is divided in blocks which are

saved in a group of DataNodes. The mapping between

blocks and DataNodes is managed by the NameNode. In

this scenario, the creation or deletion of a data block is done

by the DataNodes according to the NameNode

requirements. Also, the important security features of

HDFS are re-replication and data integrity.

 In Hadoop environment there is other important

component named Apache Spark [39]. It can be described

as a quick engine for computation of stored information in

Hadoop, which can be used to build application such as

Extract-Transform-Load models, machine learning, stream

processing, and graph computation. Usually, Spark is

deployed in a cluster of machines which makes it fast and

useful for many purposes. It is considered a group of

applications running independently on a group of

computers. Each application is controlled and managed by

a SparkContext object, which should be created in the main

program of the application and works as a driver program

and coordinates with a cluster manager, like Apache Mesos

or Hadoop Yarn. By doing this, the application controlled

by the SparkContext can get some computation power and

memory. After the assignation of resources, the cluster

manager transfers the application code to the executors so

the SparkContext can entrust tasks to them. Another

characteristic that should be highlighted is the availability

of high-level APIs written in Java, Scala, Python and R,

which permit the development of applications in Spark.

Among the supported tools, we can mention Spark SQL,

MLlib, GraphX and Spark Streaming. Spark Streaming is a

tool considered an extension of the Spark core that permits

the processing of data streams being generated in real time.

This tool can be extended, allows high throughput and is

resistant to system faults. The data streams can come from

diverse sources including Kafka, Flume and general TCP

sockets.

 Apache Flume [40] can be described as a distributed

system that collects, aggregates and transfers big amount of

data from numerous diverse sources to a centralized storage.

It can integrate with HDFS and keep the main concepts of

Hadoop such as reliability and availability. Commonly,

Apache Flume is used as a tool for log data collection and

aggregation. However, Flume can also work with different

types of data like network traffic data, data from social

media and email messages. Flume manage all the processes

of collection, aggregation and transference of data from

origin to destination by using a process called Agent. Also,

the data flow being transferred is represented in many

Events, each one of them carrying a byte payload and other

optional attributes. Inside the agent, there are three main

components: Source, Channel and Sink. Among the

characteristics of Apache Flume, it is important to mention

the high reliability that possess. Another important feature

of Apache Flume is the recoverability in case of failure.

Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.2.125

129

VI. PROPOSED SOLUTION

 The proposed solution is composed of the process of

collection and filtering traffic packets data in order to take

in consideration only the packets related to a request

flooding HTTP DoS attack and the packets related to a Slow

Request/Response HTTP DoS attack. These Slow Rate

DoS attacks become more effective if the attackers make

use of reflectors or botnets that replicate the same behavior

of each attack, resulting in the exhaustion of server

resources. For this reason, it is important to mention that the

proposed solution can identify the beginning of these

attacks, so it permits a rapid detection and helps the cloud

administrator to take measures in order to mitigate the

attack. Additionally, another important point is that in this

case the implementation also permits finding possible

flooding attacks that uses other protocols such as TCP,

UDP or ICMP.

 First, it is required as a preliminary step the collection of

traffic packets to obtain traffic packets data in a normal state

(without attacks), which will be used to make a comparison

with the real time traffic. In this case, the data collection

should be done during a year since there are fluctuations in

the network according to the season. Moreover, the number

of traffic packets per second is calculated and stored in

HDFS Spark can be used for this preliminary step. After

that, Flume will collect text files that contain the traffic

packets data generated in real time. The Flume

configuration file in this process is using the source TailDir

and the sink Avro Sink. The mentioned text files are the

result of running tshark and getting the packets fields of

date and time, source IP address, source port, destination IP

address, destination port, protocol, frame length, HTTP

method, window size, and other packet information (field

col.Info), considering only packets coming to the web

server.

 After the collection with Flume, the traffic packet data is

analyzed with Spark Streaming to apply a filter, get data

only from suspicious traffic packets and store it in HDFS.

The filtering process was implemented with python and

considers the conditions explained in section 2.4. The steps

are explained below:

a) Read the file containing information about the

number of packets per second in a normal state

b) Splits the traffic packet information in order to get the

packet fields (date and time, IP address, etc.)

c) Calculate the number of packets per second and

checks if at least one of the following conditions

matches:

 The number of packets per second coming in real

time is higher than the number in a normal state in

at least a specified threshold ttime. It is important to

Fig. 2 The proposed solution flow.

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

130

mention that this first condition permits finding

packets suspicious to be part of a request flooding

DoS attack.

 The protocol is HTTP, the method is POST and

the frame size is less than 1000 bytes. This is

considered as a threshold tsize that can be modified

by the cloud administrator.

 The protocol is TCP, the window size is 0 and the

packet information (col.Info) includes the text

“ZeroWindow”.

 The protocol is HTTP but the packet information

(col.Info) indicates the message “non-HTTP”

since the HTTP headers are not complete.

d) The results of the filtering step are stored in HDFS.

About the threshold used in this process, the definition of

ttime is: 0.5 * (max_packets). Following the

recommendations in [41], the maximum number of requests

per second calculated in normal state should be multiplied

by a number between 1 and 5 to set the maximum number

of packets. But, in our system the threshold is calculated as

the difference between the number of requests in real time

and the number of requests in normal state. The calculation

in detail would be ttime = 1.5 * (max_req) – (max_req) = 0.5

* (max_req).

 Finally, after the filtering process, the suspicious packets

data is read from HDFS and analyzed by Spark. The

implementation of this last step was done with python and

the FP-Growth algorithm was employed. Directories

including packet data from the last 30 minutes are retrieved

from HDFS and, since the FP-Growth algorithm analysis is

centered in transactions composed of a group of items, the

packet fields are considered as the items of a transaction.

However, only the following fields were in this final

analysis: source IP address, source port, destination IP

address, destination port, protocol, frame length, HTTP

method, window size and the packet information from

col.Info. Based on this, the data is analyzed in periods of 5

minutes to find the most frequent item sets including the

mentioned packet fields.

 Still, it is important to consider the FP-Growth algorithm

issue about the results that can contain sizes different from

the original number of packet fields. For this reason, the

python file that implements this final process only results

in item sets that have more than 5 fields and have a

Scenario

Memory Usage (GB) CPU Usage (%) Time (seconds)
of FP-Growth

Results Storage FP-Growth Storage FP-

Growth

Storage FP-

Growth

Normal log With Filter 9.9 9.9 73 53 17 166 68

Without Filter 9.9 10.7 52 63 9 189 648

Attack log With Filter 11.6 11.8 69 48 26 392 19063

(102 false positives)

Without Filter 11.1 12.6 28 61 8 474 20392

(987 false positives)

Scenario

Memory

Usage

(GB)

CPU Usage

(%)

Time to get FP-

Growth

analysis results

(seconds)

of Stored Logs
of FP-Growth

Results

Normal log With Filter 12.9 79 79 31

(from 90872 in 6

minutes)

25

Without

Filter

12.1 61 68 8699

(in 2 minutes)

45

Attack log With Filter 12.5 72 80 1055

(from 15607)

180

(2 false positives)

Without

Filter

12.5 64 80 11893 343

(16 false positives)

Table 1. Tested Scenarios and Results in terms of Memory Usage, CPU Usage and Time with the process phases run sequentially.

Table 2. Tested Scenarios and Results in terms of Memory Usage, CPU Usage and Time with the process phases are run simultaneously.

Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.2.125

131

frequency higher than 1. Finally, since the number of results

can be large even after doing the mentioned consideration,

the results are sorted by frequency in decreasing order and,

since there are two types of attacks identified (flooding and

slow rate attacks), the results with high frequency are

included in the final results to be stored in HDFS, same as

the results with a frequency between 2 and 30. This second

condition comes from the definition of slow rate DoS attack

that mentions that the number of packets is small, so in this

case 30 packets during 5 minutes may be understood as 1

packet received every 10 seconds that is a slow rate.

 VII. TESTS AND RESULTS

 All the testing was performed in a Docker container with

Hortonworks Data Platform Sandbox version 2.6.5.0,

which includes Spark 2.3.0, Flume 1.5.2 and Python 2. The

container was deployed in a host machine running the

operating system Linux with 64 GB of RAM memory and

a CPU Intel i3 7350K 4.20 GHZ. The monitored metrics

were Memory Usage, CPU usage and Processing Time. For

comparative purposes, the process of the proposed solution

was divided in two main phases:

a) Storage Phase: Includes log collection, filtering and

suspicious logs storage.

b) FP-Growth Phase: Includes FP-Growth algorithm

analysis and results storage

 Tests of scenarios with and without the filtering scheme

were performed with traffic packet data generated by using

Tshark. In case of the normal traffic, it was composed of

incoming packets to the docker container. In case of the

attack traffic, it was generated by using the tool Slowloris

for Slow Header DoS attack, a python file sending requests

that simulate Slow Body DoS attack and the tool

SlowHTTPTest for Slow Read DoS attacks. Additionally,

the command ping was used to add traffic.

 According to [42], there are some performance

evaluation parameters that are important since they show

how proficient is the proposed solution and it is possible to

compare it with others. In this work, we will consider the

false positive ratio, which is calculated as the ratio of

legitimate packets classified as malicious and the total of

legitimate packets; the performance of the system, which is

related to the resources used to run the system (memory,

CPU usage, time); and implementation complexity.

 The first test was running both phases (Storage and FP-

Growth) sequentially. The number of total packets in

normal traffic were 15318 in 8 minutes. On the other hand,

the number of total packets during attacks were 55388 for

16 minutes. The results of this first test are shown in the

Table 1. In case of the normal traffic, the memory usage

when using a filter and without filter are the same during

the storage, while the memory is higher when not using a

filter during the FP-Growth phase. About the CPU usage, it

is higher when using a filter during storage, but it is lower

when using a filter during FP-Growth phase. About the time,

the use of the filter permits to process the data in a shorter

period of 183, compared to the 198 seconds without any

filter. Also, with filter the number of FP-Growth results are

68, which is much smaller compared to the 648 results in

case of not using filter. Even if all the results represent false

positives, the use of a filter permits obtaining less false

positives. In case of the attack traffic, during the storage

phase the memory usage with filter is higher in 0.5 GB

compared to the scenario without filter, while during the

FP-Growth phase it was the opposite since the memory

usage with filter was less in 0.8 GB compared to the

scenario without filter. About CPU usage, the situation is

similar: during the Storage phase it is higher when using a

filter but lower during the FP-Growth phase. About the time,

when using a filter, the time is 64 seconds less compared to

the scenario without filter. Additionally, the difference

between the numbers of FP-Growth results in both

scenarios is about 1300, but the use of a filter obtains 102

false positives from 19063 results, which is less compared

to the 987 from 20392 results in the scenario without filter.

If we compare to the false positive rate of [43], which is in

the range of 0.15 and 0.30, our system has a much lower

false positive rate. The number of legitimate packets

identified as malicious can be a maximum of 102 and the

legitimate ones are 45000, so the false positive rate is

0.0023, showing higher accuracy. Still, this is in the ideal

situation of only having slow rate attacks and no other

attacks with similar characteristics.

 As second tests, the process was run with both phases

(Storage and FP-Growth) simultaneously performed and

traffic packet data created in real time with Slow

Request/Response HTTP DoS attack and without any

attack. In case of the normal traffic, with the filter the

number of generated packets was 90872 in 6 minutes, while

without filter the number was 8699 in 2 minutes. In case of

the attack traffic, with the filter the number of generated

packets was 15607 in 2 minutes, while without filter the

number was 11893 in 2 minutes. The results of these tests

are shown in Table 2. In this case, the metrics also include

the Memory Usage, the CPU Usage and the time to get the

first FP-Growth algorithm results. With the normal traffic,

the scenario with filter uses more memory and CPU with a

12.9 GB and 79% respectively, compared to the scenario

without filter which uses 12.1 GB of memory and 61% of

CPU. About the time, the scenario with filter takes 11

seconds more compared to scenario without filter. This can

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

132

be explained because the packet flow in each scenario was

captured by using the same command tshark; however,

since the moments were different, it is a probability that the

number of incoming packets decreased when the filter was

not used. In the scenario with filter, 31 packets were found

suspicious and the FP-Growth results were 25 records;

while, in the scenario without filter all the captured packets

were stored in HDFS and the FP-Growth results were 45.

This shows that, even if the traffic load was higher during

the use of the filter and the FP-Growth results don’t

correspond to an attack, the detection is more precise

compared to the scenario without filter. With the attack

traffic, the memory usage for both scenarios is 12.5 GB, but

the CPU usage in the scenario with filter is higher in 8%

compared to the scenario without filter. With the filter,

1055 packets were found suspicious from the total of 15607.

About the time, in both cases it takes 80 seconds to get the

FP-Growth algorithm results. However, with filter the

number of FP-Growth results is 180 including only 2 false

positive, while without filter the number is 343 results

including 16 false positives. This emphasizes the increased

precision when using the filter.

 Finally, tests with different number of generated packets

were performed to analyze the relation between the

processing time and the traffic load. In case of the normal

traffic, the sizes for small, medium and large traffic load

contained 15318 packets in 8 minutes, 31988 packets in 17

minutes and 44951 in 24 minutes respectively. In case of

the attack traffic, the sizes for small, medium and large

traffic load were 24043 packets in 9 minutes, 55388 packets

in 16 minutes and 84152 packets in 16 minutes respectively.

The tests were performed with and without filter, and the

storage and the FP-Growth phases were run sequentially, so

the considered processing time is the addition of each phase

processing time. In the Fig. 3 the graph shows the results of

tests with normal traffic. It shows that the difference in

processing times in the scenarios with and without filter is

not big, but it increases as the traffic load increases. On the

other hand, the Fig. 4 shows the results of test with attack

traffic. Even if the difference in processing times is small

with little traffic load, the difference increases faster when

the traffic load increases, compared to the case of normal

traffic. This graph demonstrates that the filter is more

beneficial in case of an attack since it decreases the time of

detection.

 About the complexity of the proposed solution, we can

see that, as explained in the previous section, simple

conditions were applied to identify suspicious packets and

then to classify them as malicious or not. For this reason,

we can affirm that our proposed solution has low

complexity, compared to reviewed works such as [6], [7],

[8], [14], [15], and [19].

VIII. CONCLUSION

 In this research, an attack-based filtering scheme was

proposed as a component for HTTP Slow Rate DoS attack

detection in cloud environment by using Apache Hadoop

components such as Apache Flume, Apache Spark and

Hadoop Distributed File System. To evaluate the

performance of the scheme, a complete attack detection

system was implemented and tests with filter and without

filter were performed. The results of testing the system in a

real scenario simulation, generating data in real time and

analyzing as created, showed that by using the filtering

scheme the efficiency increased in 12 % when detecting

Slow Rate DoS attacks by analyzing traffic packets data,

due to the elimination of traffic with normal behavior

preventing the DoS detection algorithm to consider them as

183

399

521

198

451

592

0

100

200

300

400

500

600

700

Small Medium Large

P
ro

ce
ss

in
g
 T

im
e

(s
ec

o
n

d
s)

Traffic Load

Traffic Load vs. Processing Time

(Normal Traffic)

With Filter Without Filter

Fig. 3 Traffic Load vs. Processing Time for Normal Traffic.

206

418
308

208

482

796

0

200

400

600

800

1000

1200

Small Medium Large

P
ro

ce
ss

in
g
 T

im
e

(s
ec

o
n

d
s)

Traffic Load

Traffic Load vs. Processing Time

(Attack Traffic)

With Filter Without Filter

Fig. 4 Traffic Load vs. Processing Time for Attack Traffic.

Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.2.125

133

an attack.

 In addition, the use of Apache Flume as a collection tool

facilitated the distributed data collection in cloud

environment, preventing data loss which was confirmed in

the scenario without filtering when all the traffic packets

data was stored in HDFS. The data loss prevention was

possible due to the configuration offered by Apache Flume,

which permits continuing with the collection even if Flume

stops. Another important remark is that the reduction in

time thanks to the filtering component permits the creation

of almost real time detection system for HTTP Slow Rate

DoS attacks, while not affecting negatively the efficiency.

This means too that the detection can be done without

affecting the normal functioning of the cloud since it is not

necessary to stop it to perform any analysis.

Finally, it was confirmed that the use of Apache Hadoop

permits the analysis of big datasets such as traffic packets

data that is generated during a HTTP Slow Rate DoS attack,

which was possible by applying its main characteristic of

performing distributed processing, even during heavy

attacks such as the generated during the tests with high

traffic load.

Acknowledgement
This study was supported by the Research Program funded

by the SeoulTech (Seoul National University of Science

and Technology).

REFERENCES

[1] T. Tamanna, T. Fatema, and R. Saha, “SDN, A

research on SDN assets and tools to defense DDoS

attack in cloud computing environment,” in 2017

International Conference on Wireless

Communications, Signal Processing and Networking

(WiSPNET), Chennai, pp. 1670-1674, 2017.

[2] Cloud Security Alliance, “The Treacherous 12-Top

Threats to Cloud Computing + Industry Insights”;

https://downloads.cloudsecurityalliance.org/assets/re

search/top-threats/treacherous-12-top-threats.pdf,

2017.

[3] VeriSign Distributed Denial of Service Trends Report

(Q1 2018),

https://www.a10networks.com/sites/default/files/A10

-TPS-EB-

Verisign_Distributed_Denial_of_Service_Trends_Re

port.pdf, 2018.

[4] M. Idhammad, K. Afdel, and M. Belouch, “Detection

System of HTTP DDoS Attacks in a Cloud

Environment Based on Information Theoretic Entropy

and Random Forest,” Security and Communication

Networks, vol. 2018, Article ID 1263123, 13 pages,

2018.

[5] O. Osanaiye, Kim-Kwang R. Choo, and M. Dlodlo,

“Distributed denial of service (DDoS) resilience in

cloud: Review and conceptual cloud DDoS mitigation

framework,” Journal of Network and Computer

Applications, vol. 67, pp. 147-165, 2016.

[6] P. Sharma, R. Sharma, E. S. Pilli, and A. K. Mishra,

“A Detection Algorithm for DoS Attack in the Cloud

Environment,” in Proceedings of the 8th Annual ACM

India Conference (Compute '15), New York, pp. 107-

110, 2015.

[7] V. Shah, and A. K. Aggarwal, “Heterogeneous Fusion

of IDS Alerts for Detecting DOS Attacks,” in

Proceedings of International Conference on

Computing Communication Control and Automation,

Pune, pp. 153-158, 2015.

[8] N Hoque, D. K. Bhattacharyya, and J. K. Kalita,

“Denial of Service Attack Detection using

Multivariate Correlation Analysis,” in Proceedings of

the Second International Conference on Information

and Communication Technology for Competitive

Strategies (ICTCS '16), New York, 2016.

[9] N. A. Singh, K. J. Singh, and T. De, “Distributed

denial of service attack detection using Naive Bayes

Classifier through Info Gain Feature Selection,” in

Proceedings of the International Conference on

Informatics and Analytics (ICIA-16), New York, 2016.

[10] M. Khandelwal, D. K. Gupta, and P. Bhale, “DoS

attack detection technique using back propagation

neural network,” in Proceedings of International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), Jaipur,

pp. 1064-1068, 2016.

[11] L. Gao, Y. Li, L. Zhang, F. Lin, and M. Ma, “Research

on Detection and Defense Mechanisms of DoS

Attacks Based on BP Neural Network and Game

Theory,” IEEE Access, vol. 7, pp. 43018-43030, 2019.

[12] J. Brynielsson, and R. Sharma, “Detectability of low-

rate HTTP server DoS attacks using spectral analysis,”

in Proceedings of IEEE/ACM International

Conference on Advances in Social Networks Analysis

and Mining (ASONAM), Paris, pp. 954-961 2015.

[13] X. Wu, D. Tang, L. Tang, J. Man, S. Zhan, and Q. Liu,

“A Low-Rate DoS Attack Detection Method Based on

Hilbert Spectrum and Correlation,” in Proceedings of

IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing,

Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City

Innovation

https://downloads.cloudsecurityalliance.org/assets/research/top-threats/treacherous-12-top-threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/treacherous-12-top-threats.pdf
https://www.a10networks.com/sites/default/files/A10-TPS-EB-Verisign_Distributed_Denial_of_Service_Trends_Report.pdf
https://www.a10networks.com/sites/default/files/A10-TPS-EB-Verisign_Distributed_Denial_of_Service_Trends_Report.pdf
https://www.a10networks.com/sites/default/files/A10-TPS-EB-Verisign_Distributed_Denial_of_Service_Trends_Report.pdf
https://www.a10networks.com/sites/default/files/A10-TPS-EB-Verisign_Distributed_Denial_of_Service_Trends_Report.pdf

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

134

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/S

CI), Guangzhou, pp. 1358-1363, 2018.

[14] R. Kumar, S. P. Lal, and A. Sharma, “Detecting

Denial of Service Attacks in the Cloud,” in

Proceedings of IEEE 14th Intl Conf on Dependable,

Autonomic and Secure Computing, 14th Intl Conf on

Pervasive Intelligence and Computing, 2nd Intl Conf

on Big Data Intelligence and Computing and Cyber

Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), Auckland,

pp. 309-316, 2016.

[15] A. Ahmad, M. N. Kama, O. M. Yusop, N. A. A. Bakar,

and N. B. Idris, “Cloud denial of service detection by

dendritic cell mechanism,” in Proceedings of 2018

IEEE Symposium on Computer Applications &

Industrial Electronics (ISCAIE), Penang, pp. 179-184,

2018.

[16] S. S. Vernekar, and A. Buchade, “MapReduce based

log file analysis for system threats and problem

identification,” in Proceedings of the 3rd IEEE

International Advance Computing Conference

(IACC), Ghaziabad, pp. 831-835, 2013.

[17] J. Therdphapiyanak, and K. Piromsopa. “Applying

Hadoop for log analysis toward distributed IDS,” in

Proceedings of the 7th International Conference on

Ubiquitous Information Management and

Communication (ICUIMC '13), New York, 2013.

[18] M. A. Latib, S. A. Ismail, O. M. Yusop, P.

Magalingam, and A. Azmi, “Analysing Log Files for

Web Intrusion Investigation Using Hadoop,” in

Proceedings of the 7th International Conference on

Software and Information Engineering (ICSIE '18),

New York, pp. 12-21, 2018.

[19] J. Zhang, P. Liu, J. He, and Y. Zhang, “A Hadoop

Based Analysis and Detection Model for IP Spoofing

Typed DDoS Attack,” in Proceedings of 2016 IEEE

Trustcom/BigDataSE/ISPA, Tianjin, pp. 1976-1983,

2016.

[20] A. Alsirhani, S. Sampalli, and P. Bodorik, “DDoS

Attack Detection System: Utilizing Classification

Algorithms with Apache Spark,” in Proceedings of

the 9th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), Paris,

pp. 1-7, 2018.

[21] R. More, A. Unakal, V. Kulkarni, and R. H. Goudar,

“Real time threat detection system in cloud using big

data analytics,” in 2017 2nd IEEE International

Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT),

Bangalore, pp. 1262-1264, 2017.

[22] M. Idhammad, K. Afdel, and M. Belouch,

“Distributed Intrusion Detection System for Cloud

Environments based on Data Mining techniques,”

Procedia Computer Science, vol. 127, pp. 35-41, 2018.

[23] S. Alzahrani, and L. Hong, “Detection of Distributed

Denial of Service (DDoS) Attacks Using Artificial

Intelligence on Cloud,” in Proceedings of 2018 IEEE

World Congress on Services (SERVICES), San

Francisco, pp. 35-36, 2018.

[24] N. Z. Bawany, J. A. Shamsi, and K. Salah, “DDoS

Attack Detection and Mitigation Using SDN:

Methods, Practices, and Solutions,” Arabian Journal

for Science and Engineering, vol. 42, no. 2, pp. 425-

441, Feb. 2017.

[25] P. Mell, and T. Grance, “The NIST definition of cloud

computing,” in National Institute of Standards and

Technology, Gaithersburg, pp. 1–7, 2011.

[26] E. Morioka and M. S. Sharbaf, “Digital forensics

research on cloud computing: An investigation of

cloud forensics solutions,” in Proceedings of 2016

IEEE Symposium on Technologies for Homeland

Security (HST), Waltham, pp. 1-6, 2016.

[27] L. Coppolino, S. D’Antonio, G. Mazzeo, and L.

Romano, “Cloud security: Emerging threats and

current solutions,” Computers & Electrical

Engineering, vol. 59, pp. 126-140, 2017.

[28] S. Basu et al., “Cloud computing security challenges

& solutions-A survey,” in Proceedings of 2018 IEEE

8th Annual Computing and Communication

Workshop and Conference (CCWC), Las Vegas, pp.

347-356, 2018.

[29] A. Odebade, T. Welsh, S. Mthunzi and E. Benkhelifa,

“Mitigating anti-forensics in the Cloud via resource-

based privacy preserving activity attribution,” in

Proceedings of 2017 Fourth International Conference

on Software Defined Systems (SDS), Valencia, pp.

143-149. 2017.

[30] H. Arshad, A. B. Jantan, and O. I. Abiodun, “Digital

Forensics: Review of Issues in Scientific Validation

of Digital Evidence,” Journal of Information

Processing Systems, vol. 14, no. 2, pp. 346-376, 2018.

[31] K. K. R. Choo, C. Esposito and A. Castiglione,

“Evidence and Forensics in the Cloud: Challenges and

Future Research Directions,” in Proceedings of IEEE

Cloud Computing, vol. 4, no. 3, pp. 14-19, 2017.

[32] G. Sibiya, H. S. Venter and T. Fogwill, “Digital

forensics in the Cloud: The state of the art,” in

Proceedings of 2015 IST-Africa Conference,

Lilongwe, pp. 1-9, 2015.

[33] S. Zawoad and R. Hasan, “Trustworthy Digital

Forensics in the Cloud,” Computer, vol. 49, no. 3, pp.

78-81, Mar. 2016.

[34] S. Nanda and R. A. Hansen, “Forensics as a Service:

Three-Tier Architecture for Cloud Based Forensic

Journal of Multimedia Information System VOL. 7, NO. 2, June 2020 (pp. 125-136): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.2.125

135

Analysis,” in Proceedings of the 15th International

Symposium on Parallel and Distributed Computing

(ISPDC), Fuzhou, pp. 178-183, 2016.

[35] S. T. Zargar, J. Joshi and D. Tipper, “A Survey of

Defense Mechanisms Against Distributed Denial of

Service (DDoS) Flooding Attacks,” in Proceedings of

IEEE Communications Surveys & Tutorials, vol. 15,

no. 4, pp. 2046-2069, 2013.

[36] M. H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita,

“An empirical evaluation of information metrics for

low-rate and high-rate DDoS attack detection,”

Pattern Recognition Letters, vol. 51, pp. 1-7, 2015.

[37] Apache Hadoop, https://hadoop.apache.org/, 2018.

[38] Hadoop Distributed File System,

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.ht

ml, 2018.

[39] Spark Streaming Programming Guide,

https://spark.apache.org/docs/latest/streaming-

programming-guide.html, 2018.

[40] Flume User Guide,

https://flume.apache.org/FlumeUserGuide.html, 2018.

[41] Fortinet FortiDDoS: Protection Profile Settings,

https://help.fortinet.com/fddos/4-3-

0/FortiDDoS/Managing_thresholds.htm, 2019.

[42] B.B. Gupta, and O.P. Badve, “Taxonomy of DoS and

DDoS attacks and desirable defense mechanism in a

Cloud computing environment,” Neural Computing

and Applications, vol. 28, Apr. 2016.

[43] K. Bhushana, and B. B. Gupta, “Hypothesis Test for

Low-rate DDoS Attack Detection in Cloud

Computing Environment,” Procedia Computer

Science, vol. 132, pp. 947-955, May 2018.

Authors

Janitza Punto Gutierrez received B.S.

degree in Telecommunications

Engineering in the Pontifical Catholic

University of Peru in 2014. In August

2019, she graduated from Seoul National

University of Science and Technology and

received master’s degree in computer

science and Engineering. Her research interests include

Cloud Computing, Big Data and Deep Learning.

Kilhung Lee is a Professor at the

Department of Computer Science and

Engineering, Seoul National University

of Science and Technology, Seoul, Korea.

He received the M.SC. in Networks in

1991 and Ph.D. degree in Networks from

Yonsei University, Seoul, Korea. During

1991-1995, he was working at the Research Center of LG

Information and Communication. His research interests are

Ad-hoc Networks, Wireless Sensor Networks, High Speed

Network, Network Management, Distributed Computing

and Web Service.

https://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://flume.apache.org/FlumeUserGuide.html
https://help.fortinet.com/fddos/4-3-0/FortiDDoS/Managing_thresholds.htm
https://help.fortinet.com/fddos/4-3-0/FortiDDoS/Managing_thresholds.htm

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

136

