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I. INTRODUCTION   

 With the rapid advance of innovative technologies in 

the field of information science and the digital world, all 

data are increasingly shared over Internet networks. On the 

other hand, unauthorized access to information or private 

information has become a problem in the virtual world. 

Security issues are increasingly coming to the forefront. 

Encryption and tattooing have become the most effective 

way to protect against unexpected attacks. However, 

traditional encryption standards, such as DES and AES, are 

generally designed only for encrypting text that does not 

have a high correlation, and are therefore considered 

unsuitable for images and video data sequences. The new 

vision of image-based encryption is the use of chaotic 

sequences for encryption key generation first prescribed by 

Friedrich in 1998.  Since the image has been introduced 

and processed in digital form, its applications have been 

steadily increasing. It is now exploited by a wide public, 

both professional and amateur. However, given the extent 

of computer resources allowing the free circulation of 

information and the ease of transmission of confidential 

data, man has been pushed to increasingly improve 

encryption algorithms to secure his confidential data. To 

protect against known attacks, any new encryption system 

must agree to Shannon’s recommendations [1]; 

(Permutation, confusion diffusion). The majority of 

techniques use static permutations such as Arnold's 

technique [2] or advanced Hill's technique [3]. For 

confusion the Xor operator is the most used [4]. Recently, 

in order to avoid differential attacks, most algorithms use 

different encryption methods. Given the advances in 

mathematical theory, for the generation of encryption keys, 

all methods use chaotic cards. 

 Chang'e Dong [5] offers color image encryption based 

on the construction of a coupled chaotic map. Xing-Yuan 

Wanga Sheng-Xian Gua Ying-Qian Zhangab [6] proposed 

a crypto system based on a multitude of chaotic maps that 

define an effective result. All these approaches use a 

Lyapunov exponent calculation [7] to check the installation 

of chaos and sensitivity to initial conditions. Most 

encryption algorithms operating on blocks used the Feistel 

scheme with several turns. RC4, RC6, DES used more than 

four towers [10]. The classical Feistel technique consists in 

separating a2n-bit block into two blocks of n bit each, this 

classical method is resumed by the scheme of the figure 

below. 

Fig. 1. Feistel’s classic round scheme. 
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This figure could be understood by the following 

evaluation function. Let t denote the quantity of blocks to 

be encrypted. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  1{

𝑔𝑖(𝐺𝑖,   , 𝐷𝑖) = (𝐺′𝑖 ,   𝐷′𝑖)

{
𝐺′𝑖 = 𝐷𝑖

      𝐷′𝑖 = 𝐺𝑖⨁𝑓𝑖(𝐷𝑖)

   𝑊𝑖𝑡ℎ  𝑖 ∈ ⟦1    𝑡⟧ 

(fi)is a n-bit pseudo-random function. 

In the absence of the diffusion, this method stays exposed 

to differential attacks. As a result, this scheme was 

expanded to include a new scheme by a bijection 

construction from purely random functions to produce a 

new encryption scheme [8], encapsulating confusion-

diffusion. Genetic algorithms are based on the Darwinian 

evolution of biological populations, whose strongest 

individuals are the most suitable to survive and reproduce 

very powerful progeny. These algorithms have surfaced as 

pre-selected evaluation optimization tools for an 

assessment function. They are based on the following 

genetic operations: The inversion, the crossover the 

mutation and the insertion. Several tentative 

implementations for genetic algorithms for encrypting 

color images have surfaced [9-10]. Some use DNA 

sequences [11] for image encryption, others have used these 

genetic algorithms to upgrade some conventional 

encryption systems [12]. 

 

II. THE PROPOSED METHOD 

 

Based on chaos, this technique implements one enhanced 

Feistel lap followed by a genetic crossover. This new color 

image encryption scheme focuses on six main axes All 

these measures are shown in a schematic diagram in the 

following figure. 

 

Fig. 2. Steps of realization of the algorithm. 

 

2.1. Chaotic Sequences Development 

 

All the encryption parameters necessary for the successful 
execution of our system are generated from three chaotic 
maps, the most frequently used in the color image 
encryption. This choice is due to the simplicity of their 
exploitation and configuration, as well as their extreme 
sensitivity to the initial parameters. 

 

2.1.1. The logistics map 

 

The logistic map is a recurrent sequence described by a 

simple polynomial of second degree defined by the 

following equation 

  {
      𝒖𝟎 ∈ ]𝟎, 𝟓  𝟏[      ,   𝝁 ∈ [𝟑, 𝟕𝟓    𝟒]

      𝒖𝒏+𝟏 = 𝝁𝒖𝒏(𝟏 − 𝒖𝒏)
         (1) 

This equation map guarantees that chaos is established to 

      𝒖𝟎 ∈ ]𝟎, 𝟓  𝟏[ 𝒂𝒔 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔     𝒂𝒏𝒅    𝝁
∈ [𝟑, 𝟕𝟔    𝟒] 𝒂𝒔 𝒄𝒐𝒏𝒕𝒓𝒐𝒍 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

 

2.1.2. PWLCM map 

 

It is a real linear sequence by pieces defined by the 
equation below. 

  {𝒘𝒏 = 𝒇(𝒘𝒏−𝟏) = {         

𝒘𝒏−𝟏    

𝒅
              𝒊𝒇   𝟎 ≤ 𝒘𝒏−𝟏 ≤ 𝒅

𝒘𝒏−𝟏−𝒅

𝟎.𝟓−𝒅
          𝒊𝒇 𝒅 ≤ 𝒘𝒏−𝟏 ≤ 𝟎. 𝟓

𝒇(𝟏 − 𝒘𝒏−𝟏)    𝒆𝒍𝒔𝒆

           (2) 

It is a very simple map to use in color image cryptography. 
It presents a chaotic aspect for 𝐝 ∈ [𝟎. 𝟓       𝟏] as control 
parameters, and 𝐰𝟎 ∈ ]𝟎    𝟏[  as initial conditions.  

 

 

 

 

2.1.3. The skew tent map (SKTM) 

 

The Skew tent map will be redefined as the next equation 

     

{
 

 
𝒗𝟎 ∈ ]𝟎   𝟏[       𝒑 ∈ ]𝟎, 𝟓   𝟏[

𝒗𝒏+𝟏 =  {

𝒗𝒏

𝒑
             𝒊𝒇  𝟎 ≺ 𝒗𝒏 ≺ 𝒑

𝟏−𝒗𝒏

𝟏−𝒑
     𝒊𝒇 𝒑 ≺ 𝒗𝒏≺𝟏       

               (3) 

The Skew tent map assures the installation of chaos under the 
conditions: 

𝒗𝟎 ∈ ]𝟎   𝟏[ 𝒂𝒔 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔,
𝒂𝒏𝒅  𝒑
∈ ]𝟎, 𝟓   𝟏[ 𝒂𝒔 𝒄𝒐𝒏𝒕𝒓𝒐𝒍 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

 

2.2. Clear Image Preparation 
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Before transferred the original image to the encryption 
surgery center, it must be prepared in anticipation, for this it 
must include the following activities. 

 

2.2.1. Original image vectoring 

 

After the three (RGB) color channels extraction and their 
conversion into size vectors  (𝐕𝐫), (𝐕𝐠), (𝐕𝐛)  (𝟏, 𝐧𝐦) 
each, a concatenation is established to generate a vector 
𝐗(𝐱𝟏, 𝐱𝟐, . . . . . . . . , 𝐱𝟑𝐧𝐦) of size (𝟏, 𝟑𝐧𝐦) 

 

2.2.2. Vector size (𝐗) adaptation 

 

The resulting vector 𝐗(𝐱𝟏, 𝐱𝟐, . . . . . . . . , 𝐱𝟑𝐧𝐦)  must be 
divided into 𝟐𝟒𝟎 − 𝐛𝐢𝐭 𝐛𝐥𝐨𝐜𝐤𝐬 −  𝟑𝟎 𝐩𝐢𝐱𝐞𝐥𝐬 , therefore 
its size must be accommodated. Let (𝐥)  the new size 
calculated from the algorithm below. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟏

{
 
 

 
 
𝒍𝒆𝒕    𝟑𝒏𝒎 ≡ 𝒓  [𝟑𝟎]

𝒊𝒇  𝒓 = 𝟎  𝒕𝒉𝒆𝒏
𝒍 = 𝟑𝒏𝒎
𝒆𝒍𝒔𝒆

𝒍 = 𝟑𝒏𝒎+ 𝟑𝟎 − 𝒓

 

After, the vector (𝐗) will be transformed into an (𝐓𝐗 ) 
vector of size (𝟏, 𝐥)  by 𝐚𝐝𝐝𝐢𝐧𝐠 𝟑𝟎 –  𝐫  new chaotic 
components at the end of the vector (𝐓𝐗 ), by applying the 
below algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟐    

{
  
 

  
 

𝒊𝒇  𝒓 = 𝟎  𝒕𝒉𝒆𝒏

(𝑻𝑿) = (𝑿)
𝑬𝒍𝒔𝒆

𝒇𝒐𝒓 𝒊 = 𝟑𝒏𝒎+ 𝟏  𝒕𝒐  𝒍

𝑻𝑿(𝒊) = 𝒎𝒐𝒅(𝑬(𝟏𝟎𝟏𝟎𝒖(𝒊)), 𝟐𝟓𝟑)) + 𝟏

𝒆𝒏𝒅 𝒊𝒇
𝑵𝒆𝒙𝒕  𝒊

 

 

2.2.3. 240-bit blocks decomposition 

 

The vector (𝐓𝐗 ) is converted to binary and then a size 

(t, 240)  binary matrix (𝐌𝐂 )  with (𝐭 = 𝐥/𝟑𝟎) . This 

decomposition can be illustrated by the following figure. 

 

Fig. 3. Transition from clear image to matrix (MC). 

 

2.2.4. (𝐈𝐕) Initialization vector design 

 

Ultimately, the (𝐈𝐕)  initialization vector of size 

(𝟏, 𝟐𝟒𝟎) is provided by the next algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟑   

{
 
 

 
 

      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟐𝟒𝟎

𝑰𝑽(𝒊) = 𝟎
𝒇𝒐𝒓 𝒌 = 𝟐  𝒕𝒐  𝒕

𝑰𝑽(𝒊) = 𝑰𝑽(𝒊)⨁𝑴𝑪(𝒌, 𝒊)
     𝑵𝒆𝒙𝒕 𝒌, 𝒊          

 

To surpass the uniform image problem (Black, White …) 
the vector (𝐈𝐕) will be combined with the chaotic vector 
(𝐇𝐓) specified by the following algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟒     

{
  
 

  
 

      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟐𝒍

𝒊𝒇 (𝒖(𝒊) > 𝒗(𝒊))𝒕𝒉𝒆𝒏

𝑯𝑻(𝒊) = 𝟏
𝒆𝒍𝒔𝒆 

𝑯𝑻(𝒊) = 𝟎
     𝑵𝒆𝒙𝒕 𝒊          

 

The blending of the two vectors is performed by the next 
algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟓 {      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟐𝟒𝟎

𝑰𝑽(𝒊) = 𝑰𝑽(𝒊)⨁𝑯𝑻(𝒊)
     𝑵𝒆𝒙𝒕 , 𝒊          

 

This vector has the mission to only modify the value of 
the first block and start the diffusion confusion process. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟔 {      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟐𝟒𝟎

𝑴𝑪(𝟏, 𝒊) = 𝑴𝑪(𝟏, 𝒊)⨁𝑰𝑽(𝒊)
     𝑵𝒆𝒙𝒕 , 𝒊          

 

(𝐍𝐁): In the absence of such an initialization vector, it is 
very difficult to follow the encryption scheme correctly. 

 

2.3. Encryption Parameter Setting Architecture 

 

2.3.1. Feistel’s first round functions construction 

 

Each MC(k: )  block of order (k)  will be subdivided 

into four identical 60 – bit blocks 

[MG(k:)GM(k:)MD(K:)DM(k:)] and projected to a first 

enhanced feistel loop described by the following figure. 

 

 

Fig. 4. First improved Feistel lap. 
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This pattern can be analytically expressed by the 
following mathematical statement. 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟒  𝝋𝒌      
𝟏

{
  
 

  
 

 

           𝑴𝑫𝟏(𝒌: ) = 𝒉𝒌(𝑴𝑫(𝒌: ))

            𝑴𝑮𝟏(𝒌: ) = 𝑴𝑮(𝒌: )⊕ 𝒈𝒌(𝑴𝑫(𝒌: ))

𝑮𝑺(𝒌: ) = 𝑴𝑫𝟏(𝒌: )  𝑴𝑮𝟏(𝒌: )

           𝑮𝑴𝟏(𝒌: ) = 𝑮𝑴(𝒌: ) ⊕ 𝒇𝒌(𝑴𝑮(𝒌: ))

    𝑫𝑴𝟏(𝒌: ) = 𝑫𝑴(𝒌: )⊕ 𝑮𝑴(𝒌: )

𝑫𝑺(𝒌: ) = 𝑫𝑴𝟏(𝒌: ) 𝑮𝑴𝟏(𝒌: )

 

⚫ 𝒉𝒌 : Chaotic permutation 

⚫ 𝒈𝒌 : Chaotic displacement 

⚫ 𝒇𝒌 : Chaotic confusion 

 

2.3.1.1. Feistel function lap design 

 

2.3.1.1.1. Permutation scheme (𝐡𝐤) building 

 

Initially, a descending sort on the first 60 values of the 
logistics sequence generates a permutation (𝐏𝐑) in 𝐆𝟔𝟎. 
secondly, a chaotic vector (𝐃𝐏) is constructed in parallel 
to serve as building the permutation matrix (𝐌𝐏). 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟕                {
𝒇𝒐𝒓 𝒊 = 𝟏  𝒕𝒐  𝒕

𝑫𝑷(𝒊) = 𝒎𝒐𝒅(𝑬(𝟏𝟎𝟏𝟎𝒖(𝒊)), 𝟓𝟐)) + 𝟑

𝑵𝒆𝒙𝒕  𝒊

 

The first line of the permutation matrix (𝐌𝐏)  is the 
permutation (𝐏𝐑); while line (𝐢 ≥ 𝟐) is the displacement 
of line (𝐢 − 𝟏)  of step 𝐃𝐏(𝐢) . This construction is 
described by the following algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟖 

{
 
 
 

 
 
 𝑻𝒉𝒆  𝒇𝒊𝒓𝒔𝒕 𝒍𝒊𝒏𝒆 {

𝒇𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝟔𝟎

𝑴𝑷(𝟏, 𝒊) = 𝑷𝑹(𝒊)
𝑵𝒆𝒙𝒕 𝒊

𝑻𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒍𝒊𝒏𝒆𝒔

{
 
 

 
 

𝑭𝒐𝒓 𝒊 = 𝟐 𝒕𝒐 𝒕
𝒇𝒐𝒓 𝒋 = 𝟏 𝒕𝒐 𝟔𝟎

𝑴𝑷(𝒊, 𝒋) = 𝑴𝑷(
𝒊 − 𝟏,𝒎𝒐𝒅

(𝒋 + 𝑫𝑷(𝒊); 𝟔𝟎)
)

𝑵𝒆𝒙𝒕 𝒋, 𝒊

 

Therefore, the application of the permutation 𝐡𝐤 on the 
block (𝐌𝐃(𝐤: )) given by the next algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟗 {      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟔𝟎

𝑴𝑫𝟏(𝒌, 𝒊) = 𝑴𝑫(𝒌,𝑴𝑷(𝒌, 𝒊))
     𝑵𝒆𝒙𝒕 , 𝒊          

 

2.3.1.2. Function scheme  𝒈𝒌 

 

 𝐠𝐤 : is a chaotic offset applied to the 60 bits of the 
𝐌𝐆(𝐤: )  block. This offset is performed by the chaotic 
vector (𝐃𝐃) resulting by applying the next algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏𝟎 

{
 

 
𝒇𝒐𝒓 𝒊 = 𝟏  𝒕𝒐 𝒕

𝑫𝑫(𝒊) = 𝒎𝒐𝒅 (𝑬(𝟏𝟎𝟏𝟎
𝒖(𝒊) + 𝒗(𝒊) + 𝒘(𝒊)

𝟑
), 𝟓𝟏) + 𝟒

𝑵𝒆𝒙𝒕  𝒊

 

The analytical expression of such a displacement is illustrated by 
the following algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟏𝟏 {      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟔𝟎

𝑴𝑮𝟏(𝒌, 𝒊) = 𝑴𝑮(𝒌,𝒎𝒐𝒅 (𝑫𝑫(𝒌) + 𝒊, 𝟔𝟎)
     𝑵𝒆𝒙𝒕 , 𝒊          

 

 

2.3.1.3. Function scheme  𝒇𝒌 

 

The matrix (𝐌𝐒)  is the passage of the vector (𝐇𝐓) 
resulting by applying the algorithm4 in matrix of size 
(𝐭, 𝟔𝟎). As a result, the confusion function is given by the 
following algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟏𝟐 {      

 
𝒇𝒐𝒓  𝒊 = 𝟏 𝒕𝒐 𝟔𝟎

𝑮𝑴𝟏(𝒌, 𝒊) = 𝑴𝑮(𝒌, 𝒊)⊕ 𝑴𝑺(𝒌, 𝒊)

     𝑵𝒆𝒙𝒕 , 𝒊          

 

 

2.3.2. Analytical expression of the function 𝝋𝒌      
𝟏  

 

The transformer of first-round diagram block (𝐌𝐂(𝐤: )) 
given by the algorithm below. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏𝟑           𝝋𝒌      
𝟏

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝒇𝒐𝒓  𝒊 = 𝟏  𝒕𝒐  𝟔𝟎

𝑴𝑫𝟏(𝒌,𝒊)=𝑴𝑫(𝒌,𝑴𝑷(𝒌,𝒊))
𝑵𝒆𝒙𝒕 𝒊

𝒇𝒐𝒓  𝒊 = 𝟏  𝒕𝒐  𝟔𝟎
𝑴𝑮𝟏(𝒌,𝒊)=𝑮𝑴(𝒌, 𝒊)⊕𝑴𝑮(𝒌,𝒊)⊕𝑴𝑺(𝒌, 𝒊)

𝑵𝒆𝒙𝒕 𝒊
𝒇𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝟔𝟎

𝑮𝑴𝟏(𝒌: 𝒊) = 𝑮𝑴(𝒌, 𝒊)⊕𝑴𝑮(𝒌,𝒎𝒐𝒅(𝒊+𝑫𝑫(𝒌),𝟔𝟎)
𝑵𝒆𝒙𝒕 𝒊

𝒇𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝟔𝟎

𝑫𝑴𝟏(𝒌: 𝒊) = 𝑫𝑴(𝒌, 𝒊)⊕𝑮𝑴(𝒌,𝒊)
𝑵𝒆𝒙𝒕 𝒊

 

We affirm that the function for the first round is a 
bijection, its reciprocal is given by the following equation. 

 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓                𝛗𝐤      
−𝟏

{
  
 

  
 

𝐌𝐃(𝐤: ) = 𝐡𝐤
−𝟏(𝐌𝐃𝟏(𝐤: ))

𝐌𝐆(𝐤: ) = 𝐌𝐆𝟏(𝐤: ) ⊕ 𝐠𝐤(𝐡𝐤
−𝟏(𝐌𝐃𝟏(𝐤: )))

𝐆𝐌(𝐤: ) = 𝐆𝐌𝟏(𝐤: ) ⊕ 𝐟𝐤 (𝐌𝐆𝟏(𝐤: ) ⊕ 𝐠𝐤 (𝐡𝐤
−𝟏(𝐌𝐃𝟏(𝐤: ))))

𝐃𝐌(𝐤: ) = 𝐃𝐌𝟏(𝐤: ) ⊕ 𝐆𝐌𝟏(𝐤: )⊕ 𝐟𝐤 (𝐌𝐆𝟏(𝐤: ) ⊕ 𝐠𝐤(𝐡𝐤
−𝟏(𝐌𝐃𝟏(𝐤: ))))

 

 

2.3.3. Crossover matrix design 

 

A genetic crossover is a pseudo-random function applied 
to two genes of the same size to form another gene of double 
size. In our approach, it is a chaotic crossing between two 
120-bit vectors to generate a 240-bit block. Firstly, for each 
block (k) two chaotic vectors (𝐇𝐑)  and (𝐑𝐇) are 
generated by the following algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝟏𝟒       

{
  
 

  
 

      

 
𝒇𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝟏𝟏

𝑯𝑹(𝒊) = 𝒎𝒐𝒅(𝑬(𝟏𝟎𝟏𝟎 ∗ 𝒊𝒏𝒇(𝒗(𝒊 + 𝒌), 𝒖(𝒊 + 𝒌))) ; 𝟗) + 𝟒

𝑹𝑯(𝒊) = 𝒎𝒐𝒅(𝑬(𝟏𝟎𝟏𝟐 ∗ (
𝒖(𝒊 + 𝟐𝒌) + 𝟑 ∗ 𝒗(𝒊 + 𝟑𝒌)

𝟒
)) ; 𝟗) + 𝟑

     𝑵𝒆𝒙𝒕 𝒊          

 

So 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝟔 

{
 
 

 
 
𝑯𝑹 = (𝒉𝟏, 𝒉𝟐, …… . . 𝒉𝟏𝟐)   𝑾𝒊𝒕𝒉  𝒉𝟏𝟐 = 𝟏𝟐𝟎 − ∑ 𝒉𝒊

𝒊=𝟏𝟏

𝒊=𝟏

𝑹𝑯 = (𝒓𝟏, 𝒓𝟐, …… . . 𝒓𝟏𝟐)   𝑾𝒊𝒕𝒉  𝒓𝟏𝟐 = 𝟏𝟐𝟎 − ∑ 𝒓𝒊

𝒊=𝟏𝟏

𝒊=𝟏

 

The crossing function in our system is defined by the 
following mathematical formula. 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝟕   {

𝑪𝒓(𝑳, 𝑹) = 𝑸  
𝑳 𝒔𝒊𝒛𝒆 𝒃𝒍𝒐𝒄𝒌 (𝟏, 𝟏𝟐𝟎) 𝒃𝒊𝒕 

𝑹 𝒔𝒊𝒛𝒆 𝒃𝒍𝒐𝒄𝒌 (𝟏, 𝟏𝟐𝟎)𝒃𝒊𝒕
𝑸 𝒔𝒊𝒛𝒆 𝒃𝒍𝒐𝒄𝒌 (𝟏, 𝟐𝟒𝟎) 𝒃𝒊𝒕
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The vector (𝐐) obtained by the following formula. 

{
 
 
 

 
 
 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝟖  

𝑸 = (𝑸𝟏)(𝑸𝟐)(𝑸𝟑)(𝑸𝟒)……… . . (𝑸𝟐𝟒)

𝑾𝒊𝒕𝒉

{
 
 

 
 

(𝑸𝟏) = 𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒉𝟏 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔 𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝑳 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒇𝒊𝒓𝒔𝒕 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
(𝑸𝟐) = 𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒓𝟏 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔 𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝑹 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒇𝒊𝒓𝒔𝒕 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
(𝑸𝟑) = 𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒉𝟐 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔 𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝑳 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆    𝒉𝟏      𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
(𝑸𝟒) = 𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒓𝟐 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔 𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝑹 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆     𝒓𝟏     𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

⋮
    (𝑸𝟐𝟒) = 𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒓𝟏𝟐 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔 𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝑹 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆   𝒓𝟏𝟏  𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

 

Example: 

Fig. 5. Crossing of two individuals. 

 

The genetic crossing function (𝐂𝐫)  defined by the 
equation7 is a bijection. Indeed, we have the block. 

𝑸 = (𝑸𝟏)(𝑸𝟐)(𝑸𝟑)(𝑸𝟒)……… . . (𝑸𝟐𝟒) 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏  𝟗     𝑪𝒓−𝟏 {
𝑳 =  (𝑸𝟏)(𝑸𝟑)(𝑸𝟓)……… . . (𝑸𝟐𝟑)

𝑹 = (𝑸𝟐)(𝑸𝟑)(𝑸𝟔)……… . . (𝑸𝟐𝟒)
 

 

2.4. Clear Image Encryption 

 

Let’s assume (∅)  the clear image (𝐌𝐂)  encryption 
function, we have 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟎      (𝑴𝑶)= ∅(𝑴𝑪)  𝑾𝒊𝒕𝒉  ∅= 𝝋𝟐 𝒐 𝑴𝒕 𝒐 𝝋𝟏 

Therefore 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟏     ∅(𝑴𝑪(𝒌: )) =   {

∀ 𝒌 ∈ ⟦𝟏  𝒕⟧   𝑾𝒆 𝒉𝒂𝒗𝒆

(𝑴𝑶(𝒌: )) = ∅(𝑴𝑪(𝒌: ))

(𝑴𝑶(𝒌: )) =  𝑪𝒓𝒌 𝒐 𝝋𝒌
𝟏(𝑴𝑪(𝒌: ))

 

The encryption process can be illustrated by the following 
diagram. 

Fig. 6. Color image encryption. 

 

2.4.1. Cryptographic function mathematical expression 

 

This new color image encryption technique follows the 

steps of the algorithm below. 

1) Clear image vectoring 

2) Adapt the size of image vector 

3) Split into t 240 – bit block 

4) Extract the initialization vector 

5) Do k=1 

6) Confusion with the first block 

7) Applying the rotation function 𝛗𝐤
𝟏 the block 

8) Perform a genetic crossover on the two output 

blocks to get the block (IS) 

9) Do (IV) = (IS) 

10) Do k = k + 1 

11) If k ≤ t  then  do  MC(k − 1: ) = MC(k: ) 

12) Return to 5 

13) If k > t then restore the encrypted image 

 

2.5. Encrypted Image Decryption 

 

Our approach is a symmetrical chaos-based encryption 
system, so the secret encryption key is also the decryption 
key. After decomposing the encrypted image into 240-bit 
blocks and regenerating all encryption parameters, the 
decryption process starts with the last block by applying the 
inverse turn function to the second block, then the 
initialization vector is recalculated to retrieve the first block 
and restore the original image. 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏𝟑     ∅
−𝟏

(𝑴𝑶(𝒌: ))=  

{
 
 

 
 ∀ 𝒌 ∈ ⟦𝒕  𝟏⟧   𝑾𝒆 𝒉𝒂𝒗𝒆

(𝑴𝑪(𝒌: ))= ∅
−𝟏

(𝑴𝑶(𝒌: ))

(𝑴𝑶(𝒌: ))= 𝝋𝒌
−𝟏𝒐  𝑪𝒓𝒌

−𝟏
 (𝑴𝑶(𝒌: ))

 

 

2.6. Example and Simulations 

 

A good system crypto must face all known attacks. For 
each statistical constant, 150 images are randomly selected 
according to a chaotic vector from a database of color 
images of different sizes and formats are tested by our 
algorithm, and a detailed statistical study has been 
developed. 

 

2.6.1. Key space 

 

If the precision of the computing is 10 decimal digits, 

then the size of the encryption key in our approach is 

1060 ≈ 2180 ≫ 2100 which is more than enough to protect 

our method from brutal attacks. 

 

2.6.2. Secret key’s sensitivity analysis 
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The high sensitivity of the encryption keys used in our 

system indicates that a very slight degradation of the 

encryption key automatically leads to an image that is so 

different from the original image. This confirmation can be 

viewed below the scheme in the figure12. 

Fig. 7. Secret key’s sensitivity 

 

We note that a 10−12  change in a single encryption 

parameter of this technology is incapable of restoring the 

clear image by the same decryption process. 

 

2.6.3. Entropy analysis 

 

Entropy is the measure of the disorder diffused by a 
source without memory.  The entropy is therefore maximal 
for a source whose symbols are all equiproable or presenting 
a flat histogram. The entropy is for an (𝐌𝐂) image of size 
(𝐧,𝐦), we pose (𝐭 = 𝐧𝐦), So 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟒               𝑯(𝑴𝑪) =
𝟏

𝒕
∑−𝒑(𝒊) 𝒍𝒐𝒈𝟐(𝒑(𝒊))

𝒕

𝒊=𝟏

 

The entropy values on the 150 images tested by our 
method are represented graphically by the following figure. 

 

 

Fig. 8. Entropy of 150 images of the same size 

 

The entropy values of the images encrypted by our 
algorithm are around 8, it is the maximum value for a color 
image encoded on 8 bits. It confirms the uniformity of the 
histograms. This proves that this approach is safe from 
entropy attack.  

 

2.6.3.1. Entropy statistical analysis 

 

2.6.3.1.1. Position parameter analysis 

 

The values derived from the entropy by applying our 
approach to over 150 images in our image database, 
constitute a statistical series with position, dispersion and 
concentration parameters have been recalculated to verify 
the safety of our approach. 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟓 {

𝑸𝟏 =   𝑭𝒊𝒓𝒔𝒕 𝒒𝒖𝒂𝒓𝒕𝒊𝒍𝒆
    𝑸𝟐 =   𝑺𝒆𝒄𝒐𝒏𝒅 𝒒𝒖𝒂𝒓𝒕𝒊𝒍𝒆
𝑸𝟑 =   𝑻𝒉𝒊𝒓𝒅 𝒒𝒖𝒂𝒓𝒕𝒊𝒍𝒆

 

Average Max Min Q1 Q2 Q3 

7,999480
662 

7,999993
872 

7,999004
283 

7,99921
863 

7,99946
043 

7,9997
37 

Table. 1. Position Parameter 

 

The moustache box of the entorpy is illustrated in the diagram in 
Figure below. 

Fig. 9. Entropy moustache box. 

 

 

2.6.3.1.2. Asymmetry coefficient 

 

The Yule coefficient measures the asymmetry of the 
frequency curve of a statistical series. It is explained by the 
next equation. 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟔  𝒔 =
(𝑸𝟑 − 𝑸𝟏) − (𝑸𝟐 − 𝑸𝟏)

(𝑸𝟑 − 𝑸𝟏)

=
𝑸𝟑 − 𝟐𝑸𝟐 + 𝑸𝟏
(𝑸𝟑 − 𝑸𝟏)

 

Under these conditions, Yule has demonstrated that 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟕     {

  𝒔 = 𝟎       𝒊𝒕 𝒉𝒂𝒔 𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒚.
𝒔 > 𝟎       𝒓𝒊𝒈𝒉𝒕 𝒔𝒑𝒓𝒆𝒂𝒅𝒊𝒏𝒈
𝒔 < 𝟎      𝒍𝒆𝒇𝒕  𝒔𝒑𝒓𝒆𝒂𝒅𝒊𝒏𝒈

 

In our entropy study, we found 

𝒔 =
𝑸𝟑 − 𝟐𝑸𝟐 +𝑸𝟏
(𝑸𝟑 − 𝑸𝟏)

= 𝟎, 𝟎𝟎𝟐𝟐𝟏 

We note that 𝒔 ≈ 𝟎. 
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We can say that the frequency curve is symmetrical. 

Fig. 10. Example of a symmetrical curve following a normal 
distribution (𝒔 ≈ 𝟎). 

 

2.6.3.1.3. Applatissment coefficient 

 

Flattening is judged by reference to the normal 

distribution density curve model. We will say that the 

frequency curve is more or less flattened than the normal 

distribution model.   

The coefficient for quantitatively measuring flattening is 

called the (Kurtosis). Pearson proposed the following 

coefficient: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 18    𝛽2 =
𝜇4
𝜎4
    𝑊𝑖𝑡ℎ   {

𝜇4  𝑖𝑠 𝑡ℎ𝑒 𝑓𝑜𝑢𝑟𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑚𝑜𝑚𝑒𝑛𝑡
      𝜎  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 

Under these conditions, Pearson has demonstrated that 

{

𝜷𝟐 = 𝟑       𝑵𝒐𝒓𝒎𝒂𝒍 𝒍𝒂𝒘.
        𝜷𝟐 > 𝟑       𝑭𝒍𝒂𝒕𝒕𝒆𝒏𝒆𝒅 𝒄𝒖𝒓𝒗𝒆

𝜷𝟐 < 𝟑     𝑺𝒉𝒂𝒓𝒑 𝒄𝒖𝒓𝒗𝒆
              (19) 

In our entropy study, we found 

𝜷𝟐 =
𝝁𝟒
𝝈𝟒
 = 𝟐, 𝟗𝟗𝟕𝟐𝟓 

We note that 𝜷𝟐 ≈ 𝟑. 

We can say that our distribution is a normal distribution. 

 

2.6.3.2. Correlation analysis 

 

Correlation is a technique that compares two images to 

estimate the displacement of pixels in one image relative to 

another reference image. Adjacent pixels of a standard 

image of a clear image have a strong correlation. A good 

crypto image system must remove such correlation in order 

to avoid any statistical attack. The correlation expression is 

defined by equation below. 

     𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛        𝑟 =
𝑐𝑜𝑣(𝑥,𝑦)

√𝑉(𝑥)√𝑉(𝑦)
                (20) 

 

2.6.3.2.1. Horizontal correlation 

 

Simulations performed on 100 identical-sized color 

images choose from a wide database of images of various 

sizes, formats and correlated values are represented 

graphically by the next figure. 

Fig. 11. Entropy of 100 images of the same size. 

 

 

2.6.3.2.2. Vertical correlation 

 

Simulations made on 150 images of the database gave 

the vertical correlation scores are displayed in Figure below. 

Fig. 12. Vertical correlation of 70 images of the varying sizes. 

 

Figure 12 shows that the vertical correlation values of the 

encrypted images are close to zero. This ensures high 

security against correlation attacks. 

 

2.6.3.2.3. Diagonal correlation 

 

Simulations made on 150 images of the database gave 

the diagonal correlation scores are displayed in Figure 13 

Fig. 13. Diagonal correlation of 100 images of the varying sizes. 

 

Figure 11 shows that the diagonal correlation values of 

the encrypted images are close to zero. This ensures high 

security against correlation attacks. 

 

2.6.3.3. Differential analysis 
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Let be two encrypted images, whose corresponding free-

to-air images differ by only one pixel, from (𝑪𝟏)  and 

(𝑪𝟐), respectively. The expressions of these two statistical 

constants (𝑁𝑃𝐶𝑅)𝑎𝑛𝑑 (𝑈𝐴𝐶𝐼) are given by equations 12 

and 13, for an image size (𝑛,𝑚). 

The 𝑁𝑃𝐶𝑅 mathematical analysis of an image is given 

by the equation below. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛21            𝑁𝑃𝐶𝑅 = (
1

𝑛𝑚
∑ 𝐷(𝑖, 𝑗)

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 

𝑊𝑖𝑡ℎ     𝐷(𝑖, 𝑗) = {
1    𝑖𝑓      𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0    𝑖𝑓       𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
 

The 𝑈𝐴𝐶𝐼 mathematicals analysis of an image is given 

by the equation 36 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 22      𝑈𝐴𝐶𝐼 = (
1

𝑛𝑚
∑ 𝐴𝑏𝑠(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 

The study of the 150 selected images revealed the 

following diagram. 

Fig. 14. NPCR of 150 images of the varying sizes. 

 

All detected values are inside the confidence interval 

[99,63 99,95]. These values are largely sufficient to affirm 

that our crypto system is protected from known differential 

attacks. 

The study of the 150 selected images revealed the 

following diagram. 

 

 

Fig. 15. UACI of 150 images of the varying sizes. 

 

All detected values are inside the confidence interval 
[33,34 33,35]. These values are largely sufficient to affirm 
that our crypto system is protected from known differential 
attacks. 

 

2.6.3.4. Avalanche effect 

 

The avalanche effect is a required property in virtually 

all cryptographic hash functions and block coding 

algorithms. It causes progressively more important changes 

as the data is propagating in the structure of the algorithm. 

Therefore, by perturbing a single bit at the input, we can 

obtain a very different output, (about 1 bit our of 2 changed) 

explaining the name of this phenomenon. The avalanche 

effect makes it more difficult to reverse the function due to 

its chaotic properties (if well designed). 

This constant determines the avalanche impact of the 

cryptographic structure in place. It is approximated by the 

next equation. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛23    𝐴𝐸 = (
∑ 𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

∑ 𝑏𝑖𝑡 𝑡𝑜𝑡𝑎𝑙𝑖
) ∗ 100 

Figure below depicts the evaluation of the 𝐴𝐸 score for 

150 images examined by our approach. 

Fig. 16. Avalanche effect. 

 

All values returned from the AE by our method are all in 
the range of residual values [73.96 74.02]. This guarantees 
that a one- bit change in the clear image will be reflected by 
a change of at least 78% of the encrypted image's bits. 

 

2.6.3.5. Signal-To-Peak noise ratio (PSNR) 

 

2.6.3.5.1 MSE 

 

The image quality estimation to be based on the pixel 
change was obtained by processing the PSNR values and the 
MSE.  These are the error metrics used to compare the 
image and the cipher image. 

Mean Square Error MSE: This is the cumulative square 
deviation between the original image and the additional 
noise image. When the MSE level is reduced, the error is 
reduced. 

This constant measure the distance between the pixels of 
the clear image and the encrypted image. It is calculated by 
the next equation. 

𝑴𝑺𝑬 =∑(𝑷(𝒊, 𝒋) − 𝑪(𝒊, 𝒋)𝟐

𝒊,𝒋

 

(𝑷(𝒊, 𝒋)) : pixel of the clear image 

(𝑪(𝒊, 𝒋)) : pixel of the cypher image 
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2.6.3.5.2 PSNR 

 

The signal-to-peak noise ratio, often abbreviated PSNR, 
is a engineering term for the ratio between a signal's 
maximum possible power and the power of distorted noise 
that affects the precision of its display. Since many signals 
have a very large dynamic range, the PSNR is generally 
stated in terms of the logarithmic decibel scale. The PSNR 
mathematical analysis of an image is given by the next 
equation. 

    𝑷𝑺𝑵𝑹 = 𝟐𝟎𝑳𝒐𝒈𝟏𝟎 (
𝑰𝒎𝒂𝒙

√𝑴𝑺𝑬
)                     (25) 

For RGB color images, the definition of PSNR is the same 
except that the MSE is the sum of all square value changes. 
In the alternative, for color images, the image is transcoded 
into a separate color space and the PSNR is displayed for 
each channel in that color space. The acceptable PSNR 
values are the real numbers in the domain (5,10). 
Simulations made on over 150 images of various 
magnitudes and formats returned the same results as 
depicted in the figure 17. 

Fig. 17. PSNR of 150 images of the varying sizes. 

 

All values returned from the PSNR by our method are all 
in the range of residual values [8,99 8,993]. A statistical 
study of the dispersions of the PSNR values of the 150 
images analyzed by our algorithm reveals the scores 
presented in the following Table 1: 

Table. 1. Parameter values. 

This table ensures that there is a low dispersion and a high 
concentration of values in a length interval of 0.001. 
Moreover, the value of 𝐬 close to 0 indicates that there is a 
symmetry in this dispersion and the value of 𝛃𝟐close to 3 
shows that our dispersion follows a normal distribution.  
More than 50% of the values achieved are within a 
longitudinal range of less than 0.0006. 

 

2.6.3.6. Speed analysis 

 

Assuming that the traditional DES and AES encryption 
algorithms operate in ECB mode, they are vulnerable to 
statistical attacks and selected plain text attacks. In addition, 
these two systems require no linking on clear and encrypted 
blocks and are consequently deficient in the face of 
differential attacks. In this sense, we will compare the time 
complexity for reference images with these two crypto 
systems. In addition to safety parameters, runtime is an 
important factor in evaluating image encryption system 
performance. To approve and document the quality of our 
methodology in a timely fashion. And finally, thanks to 
these properties, we have selected the "Lena" grayscale 
image with three different sizes (256×256) (512×512) and 
(1024×1024). The results are presented in the table below. 

Table. 2. Execution time (in second). 

Size 
Our 

Method 
DES AES 

Classic 
Hill 

Hill [3] 

256×256 0,097 0,639 0,568 0,192 0,081 

512×512 0,172 7,449 0,354 0,214 0,201 

1024×1024 0,201 29,112 1,152 0,921 0,852 

 

We compare our results with the two classical algorithms 
AES and DES, Classic Hill and Improvement Hill, we can 
affirm that the time of execution is reasonable. The test was 
performed on other images of different sizes, and we 
obtained acceptable scores. This is due to the low algorithm 
complexity of the implemented algorithms in our strategy. 

 

2.6.3.7 Math security 

 

The large size of our encryption key ensures that the 
system is protected against any brute force attack. At the 
same time, the randomness of the genetic operator and the 
functions of Feistel's trick make it difficult to unlock the 
encryption system applied to a given block, increasing the 
difficulty of the statistical attack. In addition, the high 
sensitivity to the initial parameters of our three chaotic maps, 
and the statistical constants calculated in simulation make it 
difficult to reconstruct the encryption key. 

 

III. CONCLUSION 

 

Taking security as its primary objective, this document 
develops a new encryption framework for color images of 
arbitrary size. Based on chaos, this technique relies on 24-
bit blocks by applying an improved Feistel round 
accompanied by genetic crossover, followed by chaining to 
install protection against any known attack. Simulations 
performed on more than 150 randomly selected images from 
a large database of color images of different sizes and 
formats confirm the robustness of our system. 
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