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I. INTRODUCTION 

Single image super resolution (SISR) is a classical 

computer vision task to reconstruct a high-resolution (HR) 

image from a low-resolution image. SISR is used for 

various applications such as surveillance imaging [1], 

medical imaging [2] and, HDTV in recent years. In order 

to improve accuracy in the restored image, there have 

been a lot of efforts, such as SRCNN [3], VDSR [4], and 

EDSR [5] which use deep learning that is a breakthrough 

in image restoration. 

Solutions to more accurate image restoration had 

previously been thought to require deeper networks, with 

techniques such as deep residual learning [6] and batch 

normalization [7], which unfortunately lead to a huge sum 

of parameters. Several other state-of-the-art methods 

emphasize the importance of architectural structure for 

better performance, but still require heavy computation. 

On the other hand, studies for practical operation and high 

efficiency aim to reduce computation whilst maintaining 

accuracy. However, studies on multi-scalability have not 

been enough. Multi-scalability refers to multiple scale 

image restoration by using a single model, which is 

essential in practical applications. 

Methods implementing pre-up-sampling techniques like 

SRCNN [3], VDSR [4], DRCN [8] involve an interpolation- 

based up-sampling method (bicubic interpolation). Networks 

up-sampling with bicubic interpolation can be trained to 

restore images by multiple scale factors via a single model. 

VDSR [4] showed better performance by using a single 

model trained on multiple scales compared to the 

performance by using different models for each scale. 

Scale augmentation can also be considered as data 

augmentation, thus yielding generalization of the model. 

Techniques which are also multi-scaled and involve multi-

path learning ex. MDSR [5] prove the existence of shared 

parameters across different restoring scale factors.  
 

1.1. Research contributions 

Studies show that pre-up-sampling techniques induce a 

significant number of operations compared to post-up-

sampling SR frameworks. In this paper, we introduce an 

efficient multi-scalable convolutional neural network 

constituting post-up-sampling but interpolation-based 

upscale technique. Similar to BTSRN [9], the proposed 

network consists of convolutional layers applied on the 

low-resolution input image and its feature maps, an up-

sampling layer, and more convolutional layers applied on 

the up-scaled feature maps. Unlike BTSRN [9], in the 

upscale layer, the multiple-channeled feature map of the 

previous layer is up-scaled by bicubic interpolation 

inducing multi-scalability. Additionally, unlike other 

previous works of which the training is performed using 

only scale factors of 2, 3, and 4, the proposed network is 
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trained by using real-number scale factors in the range of 

1.5 to 4.0. 

II. RELATED WORKS 

 

The implementation of convolutional neural networks 

to execute computer vision tasks such as image 

classification and image generation has been very 

successful. We can solve classification tasks, for example, 

identifying diseases in plants [10], and even group images 

based on its pixel contents for effective image retrieval 

from large databases, just as implemented in [11]. Image 

generation tasks like document binarization [12] are more 

advanced, and adversarial networks can be implemented. 

Super resolution falls into the category of image 

generation, as the output is also an image, but with a 

higher resolution. 

Image restoration can be achieved in several ways, but 

the applied upscaling method is an essential factor. 

Traditional upscale methods include nearest-neighboring, 

bilinear and bicubic interpolation, which are interpolation 

techniques applied on a 2-Dimensional matrix. Amongst 

them, bicubic interpolation has the best performance, and 

it has been applied in various software applications for 

image upscale. Its efficiency lies in the ability to enlarge a 

given image to any ratio and scale. 

Architectural frameworks like SRCNN [3] show an 

implementation of bicubic interpolation on low-resolution 

(LR) images as a preprocessing measure to enlarge them. 

The images are then refined by the convolutional neural 

network to produce an output with better quality measured 

in PSNR. SRCNN [3] was a breakthrough in the area of 

super resolution due to its deep learning application with 

the implementation of LR-HR non-linear mapping. However, 

it proposed a shallow network consisting of only 3-layer 

and also concluded the impossibility of a deeper network. 

VDSR [4] on the other hand, was able to implement a deep 

convolutional network with the application of a residual 

framework improving output image quality. Further studies 

such as DRCN [8], DRRN [13] & MemNet [14] on frame-

work structure were also made for better performance. 

Depending on framework structure, upscaling methods 

have significant effect on the performance, the number of 

operations, and the number of learning weights (parameters). 

FSRCNN [15] and ESPCN [16] do not use interpolation-

based upscale. Instead, learning based up-sampling methods 

(transposed convolution [17] and sub-pixel shuffling [16]) 

were used, in which up-sampling was implemented at the 

last layer of the network (which is post-up-sampling), 

indicating implementation of convolution in the LR space 

only. This breakthrough improved performance and reduced 

the number of operations (multi-adds) significantly. It 

efficiently improved image restoration techniques in 

general, making them more accurate and faster. SRResNet 

[18], EDSR [5], SRGAN [18], and other works involving 

post-up-sampling techniques (mostly sub-pixel shuffle and 

transposed convolution) have been able to produce state-

of-the-art performances in super-resolution. However, 

these methods require large computing operations and 

large number of parameters which are impractical. Although 

performances are outstanding in comparison, they might 

not be worth it in most application environments, and are 

thus, not efficient. 

Fast, accurate, and efficient approaches such as CARN 

[19], FALSR [20], BTSRN [9] were made to cope with 

real-time applications. These have shown possibilities to 

reduce computations and parameters significantly while 

maintaining moderate performance, making implementation 

possible in most environments. Nevertheless, frameworks 

with transposed convolution or sub-pixel shuffling can 

train only a single model per a single upscale factor. 

Therefore, separate models have to be trained to restore 

images to different scales implying the inability of multi-

scalability via a single model. 

Looking into earlier SR techniques, VDSR [4] did not 

only show better performance in comparison to its previous 

works, but it also introduced multi-scalability via a single 

model. In previous works, networks are trained separately 

for upscale factors of 2, 3, and 4. However, VDSR [4] 

introduced a single model capable of training and testing 

on different scales. This was possible due to its reliance on 

the interpolation-based up-sampling technique. At any 

cost, studies show that pre-up-sampling-based frameworks 

lead to significantly huge computations and do not perform 

well compared to post-up-sampling-based SR methods. 

More recent studies like MDSR [5] claim to have made 

a breakthrough on single model multi-scalability by 

introducing scale multi-path learning. In structures of 

scale multi-path learning models, there are three output 

ends for the three (×2, ×3, and ×4) upscale factors, as a 

result, being able to produce SR outputs of different scales. 

The first few layers of this architecture have shared 

parameters proving similarities across different scales. On 

the downside, practical applications do not involve only 

fixed number (integers) scale factors. In most practical 

applications, output images eventually have to implement 

an interpolation-based technique to produce desired output 

image size. This would require the need to train a single 

model involving real-number upscale factors which was 

unfortunately, even not implemented in VDSR [4] during 

training. Additionally, when upscaling LR images to a 

certain HR size, the other ends of the network will be 

useless taking up memory space. In this paper, we 

introduce an efficient SR technique, able to output images 
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of any desired size. We utilize the post-up-sampling 

method for efficient practical operations. 

III. PROPOSED METHOD 
 

The CNN deep residual network learns to a non-linear 

mapping between the ground-truth (high-resolution images) 

and its low-resolution counterpart. 

The identity image is the upscaled LR image via bicubic 

interpolation, and the network learns its residual for the 

reconstructed SR result. Therefore, the dataset consists of 

the LR image, its bicubic upscaled image, and the HR 

ground-truth image. The residual image, r, is given by: 

𝑟 = 𝑦 − 𝐵(𝑥),                 (1) 

where 𝐵 represents the bicubic operation, x is the LR 

image, and y is the ground truth. The loss function is 

defined as the mean squared error (MSE) of the residual 

and the predicted output of the LR image input: 

𝐿(𝜃) =
1

𝑚𝑛
∑ ∑ ‖𝐹(𝑥𝑖𝑗) − 𝑟𝑖𝑗‖

2
𝑚

𝑗=1

𝑛

𝑖=1

,         (2) 

where 𝑛 represents the number of training samples, m is 

the number of image data per a single training sample. F 

refers to the operation of the network performed on the 𝑥 

input data to produce the predicted output. 

The architecture of the proposed method is a two-staged 

residual network. As expressed in Figure 1, Convolutional 

layers and ReLU activation layers are for feature extraction, 

bicubic interpolation is then used for up-sampling, and 

additional layers are applied for SR image reconstruction. 

Inspired by VDSR [4], we up-sample the identity image 

via bicubic interpolation, and add it to the residual output 

making it a residual network. In the convolutional neural 

network (CNN), the kernel size and number of filters are 3 

× 3 and 64 respectively. ReLU is used as its activation 

function. In the LR stage, the residual network is deployed 

with 8 blocks while 2 more blocks are deployed at the HR 

stage after up-sampling. This network consists of 10 

residual blocks in total. 

3.1. Real-number multi-scalability 

We perform up-sampling with bicubic interpolation on 

all channels of the extracted feature map on the last layer 

of the LR stage as shown in Figure 1. Interpolation-based 

(bicubic) pre-up-sampling SR methods [21] have always 

been used on the LR image, which is only 1(grayscale) 

channeled. Up-sampling in this case is applied on channels 

of extracted feature (64 channels). The up-sampling layer 

is located not at the very end but a few layers before the 

last. Therefore, this can be called a post-up-sampling 

network. 

Restored images are able to possess any possible size 

and ratio utilizing interpolation-based up-sampling tech-

niques due to their nature of referencing surrounding 

pixels for the upscaled image reconstruction. Super 

resolution in previous works has not been able to emphasize 

real-number upscale factors. In practical application, 

upscale factors to enlarge images are not always fixed. For 

example, upscaling an HD+ display (1024 × 768) size to 

fit a 4K UHD (3840 × 2160) display while maintaining the 

same aspect ratio is impossible with a fixed upscale factor 

of 2. Its upscale factor is 2.4. The image will have to 

upscale by a factor of 2, thereby depending on the 

remaining 0.4 to be upscaled by an interpolation-based 

technique. Conclusively, interpolation-based up-sampling 

techniques are essential in almost all applications. Corres-

pondingly, we learn a mapping between LR and HR image 

datasets, not only with fixed scale factors but also with 

real-number upscale factors within the range of 1.5 to 4.0. 

Compared to previous works training on only 3 different 

upscale factors (×2, ×3, and ×4), we train with 11 different 

scales for better accuracy in all circumstances. The 

performance also improves as the complexity in real-

number training scale factors increases. We train our 

model on the limited number of upscaling factors, but 

 

Fig. 1. Architecture of the proposed multi-scale network. 
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inference implementation can be done to output any size 

and ratio. 

Compared to a pre-up-sampling network like VDSR [4], 

computation is reduced and performance is better. In 

comparison with the VDSR [4] model, the Number of 

parameters, multi-adds, and other properties is as shown in 

Table 1. More computation is executed in bicubic 

interpolation compared to bilinear and nearest-neighboring. 

Figure 1 shows that 64 channeled feature-maps are being 

up-scaled via bicubic interpolation. Hence, we also 

calculate and add the number of operations executed by the 

upscaling layer to the multi-adds column in Table 1. We 

use the bicubic polynomial equation to calculate the multi-

add operations of the up-sampling layer, just as done in 

[18]. According to the bicubic polynomial equation, to fill 

up every missing pixel after spreading pixels apart (for 

upscaling), 9 multi-adds operation has to be executed per 

missing pixel.  

 

Table 1. Properties in comparison with VDSR [4]. Multi-adds 

are calculated assuming the resolution of the HR image is 1280 × 

720 and upscale factor is ×4. 

Properties Proposed VDSR [4] 

Training scales 
1.5, 1.75, 2, 2.25, 2.5, 2.75, 

3, 3.25, 3.5, 3.75, 4 
2, 3, 4 

Parameters 296K 665K 

Multi-adds 49.9G 612.6G 

Number of layers 10 20 

 

3.2. LR and HR stages 

The architecture consists of three main factors - feature 

extraction, up-sampling, and image reconstruction. Residual 

blocks in the LR stage learn a set of 64 channeled feature 

map to be up-sampled via bicubic interpolation as shown 

in Figure 1. It plays the most important role in this 

framework, hence consists of 8 layers. Feature-maps in the 

up-sampling layers are the results of the analyzed LR 

image, creating the best format to up-sample via bicubic 

interpolation. After feature map up-sampling, the HR 

stage has 2 residual layers for HR image reconstruction.  

 

IV. EXPERIMENTS AND RESULTS 
 

The performance of the proposed method is evaluated, 

and it is compared with the performance of the VDSR [4], 

and other multi-scale networks. For all experiments 

excluding benchmarking, we utilize the 291 images in [4]. 

 

4.1. Training 

For training, we crop images in the dataset to make the 

LR sub-images (image patches) the size of 20 × 20. The 

network is trained with 11 different scales increasing by 

0.25 from 1.5 to 4.0, which means that the sizes of HR 

sub-images are 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, and 

80, respectively. Because sub-image sizes cannot be 

represented in float types, the LR sub-image size is 

carefully chosen to put the receptive-field concept into 

account. The LR sub-image size and the 0.25 step size of 

scale are determined in order to make the corresponding 

HR sub-image sizes integer figures. Data augmentations 

included: flip, rotation, and downsizing, with dataset 

increasing due to scale number complexity. Cropped HR 

image patch was downscaled via bicubic interpolation to 

create x (LR) dataset. LR and HR sub-images in each 

batch have to be of the same size, hence each batch 

represented an upscale factor, and training iteration was 

performed on a randomly assigned batch. 

We train the models with adaptive momentum optimizer 

[22] and 128 mini-batch sizes. Training is done over 

275,000 iterations with an initial learning rate of 10-3 

exponentially decaying to 10-5. Iterations are roughly the 

same (a little over 275,000) for all performed experiments. 

Maintaining iteration number, more epochs (to repeat 

iterations of the same set of data) are needed for training 

on the deeper networks due to the reduced amount of 

dataset. Deeper networks have larger receptive fields, 

hence require larger sub-image sizes. Xavier normal [23] 

is used to initialize weights before training. All 

implementations are executed utilizing the PyTorch [24] 

deep learning tool and training lasts for roughly 5 hours on 

RTX 2080. 

 

4.2. Datasets 

After image cropping, the size of the HR sub-images 

ranges from 30 up to 80. In VDSR [4], the dataset was 

created downsizing by all required scales, upscaling via 

bicubic and cropping. All cropped sub-images are combined 

forming a larger dataset. In the proposed method, however, 

cropping images for a single network is a tricky task, 

because the number of all datasets have to be equal across 

all scales for equality during training. Data augmentation 

techniques with the priority being – original image, left-

right flipping, rotation by 90°, 180°, 270°, and downsizing 

are used to solve this problem. First, we crop the dataset 

images to sub-images for the largest HR sub-image size 

needed (80 × 80). The amount of the cropped HR sub-

images is then used as the limit value to stop creating 

more sub-images (by cropping) when reached by other HR 

sub-image sizes. Hence, not all augmentation techniques 

will be utilized as scale factor decreases.  

Set 5 [26], Set14 [27], BSD 100 [28] and Urban 100 [30] 

datasets are used for testing and comparing results with 

previous works. The datasets, especially Set 5 [26] with 

different scale factors are used to evaluate the performance  
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of different structures and strategies of the proposed 

method. 

4.3. LR and HR stages 

It was mentioned in Section 3 that the LR stage and HR 

stage represent feature extraction and image reconstruction 

respectively. However, to reduce the computational com-

plexity of the network, experiments are made to reduce the 

number of residual blocks on the HR stage while 

increasing those of the LR stage. This experiment is also 

done in comparison with VDSR [4]. 

For a fair comparison, training is done with 20 layers 

and with the upscaling factor of 2, 3, and 4. The number of 

the LR and HR stages residual blocks lead to difference in 

performance, showing the importance of the up-sample 

layer’s location. To maintain the number of residual 

blocks in the network, the increased feature extracting 

layers (layers in LR stage) means reducing HR image 

reconstructing layers. As shown in Table 2, when LR-HR 

blocks are 17 - 3 and 18 - 2, the difference in performance 

measured in PSNR is less than 0.01 which is negligible.  

 

 

Fig. 2. The number of parameters per layer. The colored lines’ 

lengths cover the number of layers and parameters in the HR 

stage. Green shows the 19-1, red is the 18-2, and blue is the 17-3 

LR-HR stages’ layers. Each hidden layer has 36,864 parameters. 

19 - 1 LR-HR blocks display reduction in performance 

due to excessive reduction in the number of parameters as 

shown in Figure 2. 19-1 implies 19 LR blocks and just 1 

layer on the HR space, which is the last layer of the 

network (the first and last layers of SR networks usually 

possess the least number of parameters). The difference in 

parameter numbers in the HR stages between 17-3, 18-2, 

and 19-1 are 74,304, 37,440, and 576 (each hidden layer 

has 36,864 parameters) respectively. 576 parameters are 

too small for image reconstruction regardless of having 

more in the LR stage, therefore 37,440 parameters in the 

HR stage (18-2 LR-HR blocks) were concluded as the best 

for a trade-off between performance and efficiency of the 

network. Compared to VDSR [4], this (20 layers 18-2) 

network reduces the computation significantly. The training 

process can be observed in Figure 3, and there is little to 

no difference in performance between 17-3 and 18-2. 

 

 

Fig. 3. Training comparison between 17-3, 18-2, 19-1 LR-HR 

residual blocks. Results are the average PSNR of ×2, ×3, and ×4 

upscale factors, on the Set 5 dataset 

 

4.4. Reduction of residual blocks 

For more efficient results, we reduce the number of 

residual blocks to 10 layers. The previous experiment 

emphasizes the need for 2 layers in the HR stage, which 

denotes that reduction should be done in the LR stage 

layers if required. Reduction from 18-2 (20 layers) to 8-2 

(10 layers) LR-HR stages are experimented and results 

were similar as shown in Table 3. The difference of the 

overall average on the testing datasets is approximately 

0.1 (in PSNR), which is trivial. Although the VDSR [4] 

model is successfully trained on the 291 [29], [30] images 

dataset, its receptive field was not large (due to pre-up-

sampling) compared to the proposed method, hence sub-

images had to be cropped to a large size, making 291 [29], 
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Table 2. Results based on LR-HR stage residual blocks. The Set 5 dataset is used for testing. SSIM is calculated with the aid of [25]. 

Proposed PSNR (dB) and SSIM results VDSR [4] 

LR-HR 

Scale 

17 - 3 

PSNR / SSIM 

18 - 2 

PSNR / SSIM 

19 - 1 

PSNR / SSIM 

0 - 20 

PSNR / SSIM 

× 2 37.5733 / 0.9588 37.5659 / 0.9588 37.0928 / 0.9513 37.53 / 0.9587 

× 3 33.9024 / 0.9232 33.8976 / 0.9229 33.3120 / 0.9072 33.66 / 0.9213 

× 4 31.5304 / 0.8865 31.5334 / 0.8859 30.8687 / 0.8622 31.35 / 0.8838 

Average 34.34 / 0.9228 34.33 / 0.9225 33.76 / 0.9069 34.18 / 0.9213 
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[30] images dataset insufficient on the proposed 20 layers 

(18-2) network. The 10 layers network had a similar 

performance while the amount of computation is reduced 

by 29.8% compared to the 18-2 LR-HR layers, and by 

91.9% compared to VDSR [4], when we assume the HR 

image resolution is 720P and the upscaling factor is ×4. 

 
Table 3. Results based on LR-HR stage residual blocks. To 

calculate the multi-adds, we assume that the HR image is 720P 

and the upscaling factor ×4. 

Dataset 
 LR-HR 

Scale 

18 - 2 

PSNR/SSIM 

8 - 2 

PSNR/SSIM 

VDSR [4] 

PSNR/SSIM 

Set 5 

× 2 37.57/0.9588 37.52/0.9585 37.53/0.9587 

× 3 33.90/0.9229 33.85/0.9226 33.66/0.9213 

× 4 31.53/0.8859 31.48/0.8854 31.35/0.8838 

 × 2 33.01/0.9139 33.01/0.9137 33.03/0.9124 

Set 14 × 3 29.87/0.8367 29.86/0.8364 29.77/0.8314 

 × 4 28.26/0.7787 28.26/0.7782 28.01/0.7674 

 × 2 31.91/0.8959 31.89/0.8954 31.90/0.8960 

B100 × 3 28.85/0.7985 28.84/0.7981 28.82/0.7976 

 × 4 28.34/0.7266 27.33/0.7262 27.29/0.7251 

 Urban 

100 

× 2 30.77/0.9146 30.73/0.9138 30.76/0.9140 

× 3 27.14/0.8289 27.14/0.8286 27.14/0.8279 

× 4 25.25/0.7554 25.26/0.7553 25.18/0.7524 

Average 30.53/0.8514 30.43/0.8510 30.37/0.8490 

Parameters 665K 296K 665K 

Multi-adds 71.1G 49.9G 612.6G 

 
4.5. Real-number multiscale training 

All results in Tables 2 and 3 are based on experiments 

done by training with only 2, 3, and 4 upscale factors for 

fair comparison and accurate evaluation. In reality, 

however, image restoration to up-sample images to any 

size should be possible. Table 4 shows results based on 

training the 10 layers network by more complex upscaling 

factors. The model was additionally trained by upscaling 

factors in the range of 1.5 to 4.0 with a step of 0.5 (1.5, 2, 

2.5, 3, 3.5, 4), and also with a step of 0.25 (1.5, 1.75, 2, 

2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4). The difference is 

between 3, 6, and 11 upscaling factor values. Greater 

numbers of upscaling factor values give more complexity 

to the model. The results of VDSR [4] with real-number 

upscaling factors are obtained by using the official model 

in [31]. VDSR [4] results have poor performance especially 

on 1.5 and 1.75 scales, possibly due to its nature of pre-

upscaling. 

Results are tested with Set 5 [26] and with the 11 

scaling factors. The results in Table 4 lead to a conclusion 

that scale complexity improves performance. More scale 

augmentation creates more batches for training which is 

essential. Theoretically, reconstructed (SR) images would 

have more quality on real-number upscale compared to 

models that are trained with only 2, 3, and 4 upscale 

factors. 

 

4.6. Comparisons with State-of-the-Art methods 

All the previous experiments are done by training using 

the addition of T91 [29] and BSD200 [30] image datasets 

just as performed in VDSR [4]. We use the addition of 

T91 [29], BSDS 200 [30] and General 100 [32] to train the 

model for benchmarking results on Table 5 and Figure 4.  

Two main key elements in this paper are real-number 

multi-scalability and efficiency in practical implementation. 

Models such as CARN [19], FALSR [20], BTSR [9], and 

OISR [33] are state-of-the-art methods excelling in efficiency 

while maintaining impressive levels of performance. 

Nevertheless, they do not have the ability to restore 

images with multiple upscaling factors, thus needing 

multiple trained models for implementation on several 

upscale factors, which we can arguably be referred to as 

inefficient. Therefore, the comparison was done with 

state-of-the-art methods that can perform multi-scale 

learning using a single model. 

Table 4. Real-number multi-scale training comparison. The red shows the best while the blue indicates the second-best performance. 

Dataset 
Trained scales 

 

Testing scale 

2, 3, 4 

PSNR/SSIM 

1.5, 2, 2.5, 3, 2.5, 4 

PSNR/SSIM 

1.5, 1.75, 2, 2.25, 2.5, 2.75,  

3, 3.25, 3.5, 3.75, 4 

PSNR/SSIM 

VDSR [4, 28] 

(2, 3, 4) 

PSNR/SSIM 

Set 5 

1.5 40.40/0.9766 40.62/0.9771 40.59/0.9770 33.54/0.9503 

1.75 38.81/0.9677 38.81/0.9677 38.82/0.9677 35.91/0.9572 

2 37.52/0.9585 37.49/0.9584 37.49/0.9585 37.53/0.9587 

2.25 36.40/0.9496 36.34/0.9495 36.37/0.9495 35.12/0.9416 

2.5 35.39/0.9404 35.41/0.9406 35.45/0.9406 34.34/0.9325 

2.75 34.66/0.9326 34.63/0.9327 34.68/0.9328 33.54/0.9265 

3 33.85/0.9226 33.83/0.9226 33.86/0.9228 33.66/0.9213 

3.25 33.18/0.9137 33.13/0.9137 33.20/0.9138 32.47/0.9080 

3.5 32.64/0.9042 32.66/0.9045 32.69/0.9046 32.18/0.9006 

3.75 32.00/0.8957 31.99/0.8955 31.98/0.8953 31.57/0.8914 

4 31.48/0.8854 31.51/0.8852 31.50/0.8853 31.34/0.8838 
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Table 5. Comparison with light weight state-of-the-art models. We assume the HR image is 720P. The red shows the best while the blue 

indicates the second-best performance.  

Scale Model Params 
Multi- 

Adds 

Set 5 

PSNR/SSIM 

Set 14 

PSNR/SSIM 

B 100 

PSNR/SSIM 

Urban 100 

PSNR/SSIM 

Real-number 

Upscale 

2 

VDSR [4] 665K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 No 

LapSRN [34] 813K 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 No 

MPRNet [31] 538K - 38.08/0.9608 33.79/0.9196 32.25/0.9004 32.52/0.9317 No 

 EMSR (ours) 296K 94.5G 37.57/0.9588 33.16/0.9144 31.95/0.8959 30.99/0.9162 Yes 

3 
VDSR [4] 665K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 No 

MPRNet [31] 538K - 34.57/0.9285 30.42/0.8441 29.17/0.8073 28.42/0.8578 No 

 EMSR (ours) 296K 61.4G 33.92/0.9235 29.91/0.8370 28.89/0.7980 27.31/0.8324 Yes 

 VDSR [4] 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 No 

4 LapSRN [34] 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 No 

 MPRNet [31] 538K 31.3G 32.38/0.8969 28.69/0.7841 27.63/0.7385 26.31/0.7921 No 

 EMSR (ours) 296K 49.9G 31.59/0.8863 28.33/0.7797 27.36/0.7267 25.38/0.7590 Yes 

 

 
Fig. 4. Trade-off between performance vs number of parameters and number of operations computed, assuming that the HR resolution is 

720P. Results with upscale factor ×4 tested with Set5 [26], Set14 [27], BSD100 [29] and Urban100 [28] datasets. Note, the x axis is a log 

scale. 

 

 
 

Fig. 5. Visual comparison between the ground-truth, bicubic and restored image, with the butterfly and woman images of the Set 5 [26] 

image dataset. Scale factors ×2.5 and ×3.25 are used. 

VDSR [4] Ground 

Truth 

Bicubic EMSR (ours) 

(ours) 

×2.5 - PSNR / 

SSIM 
25.45 dB / 0.8678 30.55 dB / 0.9480 31.90 dB / 0.9594 

×3.25 - PSNR / 

SSIM 

27.82 dB / 0.8735 30.85 dB / 0.9261 31.99 dB / 0.9350 

http://doi.org/10.33851/JMIS.2021.8.2.101
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The comparison is performed with VDSR [4], LapSRN 

[33], MDSR [5], DRRN [13] and MPRNet [35]. Results in 

Figure 4 are based on scale factor ×4 to show superiority 

in post-up-sampling techniques. The results prove 

efficiency in parameters and operation numbers while 

maintaining good performance. 

The proposed model is also able to perform real-number 

upscaling. The results in table 5 leaves out MDSR [5] and 

DRRN [13] due to their bulkiness in computation and 

parameters. MPRNet [35] provides good results with less 

computation, but Table 5 show that more parameters are 

used compared to the proposed model. 

Figure 5 shows visual comparison with VDSR [4]. 

Major differences cannot be seen visually, but the results 

in PSNR indicate improvement in performance. 

 

V. CONCLUSION 

 

The proposed (EMSR) model is able to find a break-

through in interpolation-based post-up-sampling with a 

more realistic and efficient outcome.  

Using a single model for vast complexity with a small 

number of parameters and less computation pushes its 

ability to the limit without waste. Our model can generate 

images to any possible size and ratio well within the range 

of trained upscale while maintaining a very reasonable 

amount of quality. Further works can be done on the 

architectural structure for even better performance whilst 

maintaining its efficiency. 
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