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I. INTRODUCTION  

Image super-resolution (SR) is an important task in 

computer vision to increase or recover the size of a low-

resolution (LR) image, generating a high-resolution (HR) 

output. This is usually referred to as single image super-

resolution (SISR). SISR is an ill-posed problem, as there 

are various solutions for any LR image. Applications on 

SISR in recent years can be found in surveillance imaging 

[1], medical imaging [2], High-definition television, and 

more. 

One of the traditional image upscaling methods involve 

the use of interpolation algorithms to increase image sizes. 

Thus, surrounding pixel data are utilized for generating the 

required additional pixel values. 

Image super-resolution using Deep Convolutional 

Networks [3], also known as SRCNN was proposed by 

Dong et al to well tackle this problem and is the pioneer of 

deep learning-based SR study. 

SRCNN [3] was performed in the HR space only by 

upscaling LR images before input via bicubic interpolation, 

but a Fast Super-Resolution Convolutional Neural 

Networks [4] (FSRCNN) was also proposed with 

transposed convolution to learn the upsampling process 

with the LR image as input. Additionally, an Efficient Sub-

pixel Convolutional Neural Network (ESPCN) [5], which 

was proposed by Wenzhe Shi, efficiently generates HR 

images directly from the LR space and has been used by 

various algorithms as the standard upsampling module. 

More complex and advance SISR algorithms 

successfully improve the performance in terms of PSNR 

(peak-to-signal-ratio). Namely, Enhanced Deep Residual 

Networks for Single Image Super-Resolution [6], and 

Residual Channel Attention Networks [7], usually known 

as EDSR and RCAN respectively. They prove the impact 

of network architecture on recovering image details for 

better performance. Attention mechanisms utilizing the 

channel and spatial attention are also key factors on SR 

performance in recent years. However, these algorithms do 

not only require heavy computation and huge amounts of 

parameters but are also able to upsample images by only a 

single scale factor with a single network. 

More efficient lightweight SR networks like the Fast, 

Accurate, and Lightweight Super-Resolution with Neural 

Architecture Search [8], known as FALSR, use advance 

and more complex algorithms aiming at maintaining 

moderate performance while reducing the computational 

burden. Nevertheless, they aren’t able to upsample LR 

images by various scale factors with a single model.  
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1.1. Research contributions 

Multi-scale Deep Super-Resolution [6], Cascading 

Residual Network [9], and Multi-path Residual Network 

[10] referred to as MDSR, CARN, and MPRNet 

respectively, are multi-path and multi-scale SR algorithms, 

which can output HR images of various sizes via a single 

model. They require separate pathways depending on the 

selected upscale factor and have outstanding results. 

However, each pathway has to be trained for a specific 

upscale factor, leaving out the rest, which can be considered 

a waste of parameters. In this paper, we propose a single-

path upscale algorithm, utilizing all parameters of the 

model for every upscale factor. This reduces the network 

overall parameters while maintaining its performance.  

The rest of the paper is organized in the following order. 

Section II gives reference to existing SR multi-scale 

learning algorithms. Section III shows an analysis of the 

problems in sub-pixel convolution for upsampling in SR 

and proposes a solution. Experimental results are shown in 

section IV, which leads to conclusions given in section V. 

 

II. RELATED WORKS 

In recent years, deep learning has been utilized for 

various computer vision tasks such as facial expression 

recognition [11], segmentation, etc. Dong et al were the 

first to use the deep learning convolutional neural network 

in SISR. The algorithm is known as SRCNN [3]. 

The SRCNN [3] network requires an upscaled image 

input to construct the desired HR image output. Bicubic 

interpolation is used to perform the input image 

preprocessing task not only in SRCNN [3], but also in 

models from algorithms including Very Deep Super-

Resolution Networks [12] (VDSR), Deeply-Recursive 

Convolutional Network [13], and others. Therefore, the 

networks process images in the HR space only, which 

increases computation significantly and makes it 

impossible to analyze images in the LR space. Algorithms 

like the Efficient Multi-scale Super-Resolution [14], and, 

Balanced Two-Stage Super-Resolution [15] operate on 

images in both the LR and HR space for more accurate 

results. 

 

2.1. Learning-based upsampling 

Transpose convolution, also known as deconvolution, 

was proposed in FSRCNN [4] aiming at generating the HR 

output image in the last layer for efficiency and acceleration. 

This significantly reduced the computational burden and 

did not require bicubic input preprocessing. Improvement 

in performance with even fewer parameters compared to 

SRCNN [3] was also realized, concluding that operation on 

the LR space is essential in SISR.  

ESPCN [5] proposed by Wenzhe Shi, introduced sub-

pixel convolution for image upsampling, which also 

operates on images in the LR space.  

Utilizing the sub-pixel convolution upsample module, 

huge and complex models like EDSR [6], and RCAN [7] 

offer outstanding performance. Algorithms that generate 

images visually pleasing to the human eye such as Super-

Resolution using a Generative Adversarial Network [16], 

also use sub-pixel convolution to upsample images to the 

desired size. A similar technique known as sub-pixel 

mapping was implemented for text detection from video 

frames [17]. 

Unlike complex and huge computational models, 

FALSR [8] and CARN mobile [9] are lightweight models 

for efficient real-time implementation with a good 

performance-to-efficiency trade-off. They also utilize a 

learning-based upsampling technique. 

Although learning-based upsampling methods are 

efficient and effective in terms of performance and 

efficiency, the limitation of these methods is that multi-

scale learning is not possible. As first proven in VDSR [12], 

networks utilizing the interpolation-based upsampling 

method can train on images with various scales as the input 

image is upscaled before implementation. VDSR [12] 

proved better performance when trained with various scales. 

Compared to the methods training separate models for 

separate upscale factors, the advantage of VDSR [12] is that 

it trains a single model for multiple upscale factors, which 

saves parameters considerably. 

 

2.2. Multi-scale multi-path learning 

Multi-scale multi-path learning or scale-specific multi-

path learning is the process of learning for various scale 

factors with separate paths. This algorithm utilizes a single 

model efficiently for various scale factors. It is widely used 

in various methods such as MDSR [6], CARN [9], and 

MPRNet [10]. 

 

2.3. EDSR and MDSR architecture 

MDSR [6], which is an extension of the EDSR [6] model 

claim to realize a breakthrough in multi-scale training with 

sub-pixel convolution. They implement multi-path learning 

for the separate scale factor. FSRCNN [4] shows that after 

the whole model was trained for a certain scale factor, the 

whole model didn’t need training for the other scale factors. 

The performance obtained by training only the transpose 

convolutional layer for the other scale factors is the same as 

training the whole model for the other scale factors. This 

proves that shared parameters across various scale factors 

are present, which MDSR [6] use to their advantage. 

MDSR [6] used multi-path learning for various scale 

factors. Multi-path learning in MDSR [6] consists of two  
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(a) MDSR baseline model with upsample module  (b) Proposed single-path upsample module 

 

Fig. 1. MDSR model architecture with its sub-pixel convolutional upsample module, and the proposed upsample module represented in 

the red broken lines. The proposed module uses a linear downscale on the channel axis for each scale. 

 

 

elements. The first one is the preprocessing module for each 

scale factor separately, the second one is the sub-pixel 

upsample module for the separate scale factors. The central 

part of the network has shared parameters across all scale 

factors. During training, the central convolutional layers are 

trained for every scale factor, but each of the multi-path 

layers is trained for only one of the scale factors. 

 

III. PROPOSED METHOD 

We present a multi-scale single-path module exploiting 

the strong points of sub-pixel convolution and multi-scale 

training, and utilizing a single path for training. Our 

proposed method overcomes the need for multi-path 

learning and uses all the parameters for all upscale factors. 

 

3.1. Sub-pixel convolution for upsampling in SR 

As first proposed in ESPCN [5], sub-pixel convolution is 

achieved by applying convolution to output a feature of 

s2×n channels. Then, pixel shuffling is applied by 

rearranging the pixels to increase the width and height of 

the feature by s while reducing the channel dimension to n. 

Therefore, channel dimensions are different for all scale 

factors. Note that s in s2×n represents the upscaling factor. 

As a result, MDSR [6] uses separate sub-pixel 

convolutional layers for different scale factors. 

 

3.2. Problems in multi-path Upsample Module 

As shown in figure 1(a) MDSR [6] upsample module, the 

sub-pixel convolutional layer is used for each scale factor 

separately. MDSR [6] network use 64 filters for every layer, 

therefore, for scale factor ×2 in sub-pixel convolution, 

22×64×64 filters are needed for the pixel shuffle upscaling 

process. Scale factor ×3 path layer needs 32×64×64 filters, 

which is reasonable. However, in the ×4 upscale layer, 

42×64×64 filters cause a very huge number of parameters 

and therefore is replaced by doubling the scale factor ×2 

upscale filter. Although it is an intuitive solution, it causes 

an imbalance in the number of parameters on the ×3 and ×4 

upscale modules (32×64×64 > 22×64×64×2), which makes 

the ×3 upscale module possess the greatest number of 

parameters. 

Another observed problem is that during training, each 

multi-path branch representing a certain scale factor will be 

trained one-third of the time compared to the central layers 

of the network. Moreover, when training for scale ×2 for 

example, ×3 and ×4 upscale layers are useless for the 

performance of the ×2 upscale layer.  

 

3.3. Single-path interpolation-based Upsample Module 

We propose a solution as shown in figure 1(b). The green 

pixels shown in figure 1(b) are treated as the points to be 

downscaled via 1-dimensional interpolation. Note that the 

number of the green pixels represents the number of 

channels. Therefore, downscaling the pixels means 

reducing the number of channels. Thus, we reduce the 

channel dimension of the features from 42 × n to s2× n when 

the required upscale factor is less than 4.  

We firstly utilize the sub-pixel convolution for scale 

factor ×4 with 42×64×64 filters and use a 1-dimensional 

linear downscale on the channel axis of the feature map 

depending on the training scale factor. This reduces 42×64 

channeled output to 22×64, and 32×64 channels for ×2 and 

×3 scale factors while applying no reduction for ×4 factor 

upscale. Implementing sub-pixel convolution for scale 

factor ×4 allows the model to gather more parameters, and 

also lets the model perform channel compression for the ×2, 

and ×3 upscale factors. Thus, it exploits all its parameters 

for all the needed upscale factors. It can be formulated as: 

 

U(FLR) = Sp[Dli(Wsc * FLR)] ,    (1) 
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where the low-resolution feature-map FLR, upsamples itself 

by an upsample function U. Wsc, Dli, and Sp represent sub-

pixel convolution, linear downscale, and pixel shuffle 

upscale respectively. 

 

Table 1. Parameters comparison between multi-path and single-

path upscale modules. Note, these are parameters of the sub-pixel 

convolutional layers only. 

 

With this solution, all parameters can be used across 

various scales without waste, which reduces the need for 

excessive parameters. As expressed in Table 1, the multi-

path upscale branches require separate parameters for 

various scale factors. Consequently, compared to the 

single-path module, there are fewer parameters for each 

scale, and an imbalance in parameter numbers between 

scale factors ×3 and ×4 is observed. The single-path upscale 

module, on the other hand, uses all its parameters for all 

upscaling factors and is reduced compared to the total 

parameters of the multi-path upscale module. The 

parameters are reduced by 24% in the single-path module. 

More reduction can be identified when we also consider the 

last convolutional layers of the network shown in figure 1. 

This reduction is the same not only for MDSR [6] model 

but also for CARN [9] and MPRNet [10] as their multi-

scale upsampling algorithms are the same as MDSR [6]. 

However, the lightweight mobile model from the CARN [9] 

paper called ‘CARN-M’ utilized group convolution in the 

upsample module, which makes it different from the MDSR 

[6] upsample algorithm. Nevertheless, parameters also 

reduce by 24% with the single-path algorithm. 

 

IV. EXPERIMENTS 

For a fair comparison, we train the MDSR [6] baseline 

model and train for the proposed algorithm by modifying 

the upsample module only. The same experiment is also 

performed for CARN-M [9] because its upsample module 

is composed of group convolutions with a group of 4. 

Although cubic interpolation is less memory efficient 

according to [18], we perform experiments on cubic 

downscale to compare their results with the multi-scale and 

linear downscale. Therefore, experiments are performed for 

multi-path, linear single-path, and cubic single-path using 

the MDSR [6] and CARN-M [9] models. 

 

4.1. Datasets and training details 

We employ the Div2K [19] RGB data images for training. 

Image data are cropped into 48×48 patches before training, 

and data augmentations include; flip and rotation to 90°, 

180°, and 270°. The Set5 [20], Set14 [21], B100 [22], and 

Urban [23] datasets are used for evaluation and comparison. 

We use a mini-batch of 16 and the L1 (Mean Absolute 

Error) loss also known as the MAE loss. Adaptive 

momentum optimizer [24] with a learning rate of 10-4 and 

halved at every 2×105 iteration updates. Xavier normal [25] 

is used as the weight initializer. The models are trained for 

6×105 iterations. Although we trained the MDSR models 

almost exactly as presented in the EDSR-MDSR [6], paper, 

we didn’t implement the geometric self-ensemble 

procedure which was expressed as ‘MDSR+’. We utilize 

the same settings to train the CARN-M [9] model. For 

implementation, we utilize the PyTorch deep learning tool, 

with GPU RTX 2080. 

 

4.2. Upsample module performance comparison 

As shown in Table 2, we compare results between multi-

path, and linear single-path for MDSR [6]. We utilize the 

 

Table 2. Performance comparison with the MDSR [6] model. The red color indicates the best performance while the blue color shows the 

second-best performance in terms of PSNR and SSIM [26]. We also measure performance with MS-SSIM [27] and UQI [27]

pscaling 

factor 

Multi-path upsample 

module par. 

Single-path upsample 

module par. 

×2 147.5K 

589.8K ×3 331.8K 

×4 294.9K 

Total 774.1K 589.8K 

Dataset scale 
Multi-path Linear single-path Cubic single-path 

PNSR / SSIM MSSSIM /UQI PNSR / SSIM MSSSIM /UQI PNSR / SSIM MSSIM / UQI 

Set5 

×2 37.86 /0.9594 0.9953 /0.9990 37.87 /0.9595 0.9953 /0.9990 37.85 /0.9595 0.9953 /0.9990 

×3 34.31 /0.9253 0.9908 /0.9980 34.31 /0.9256 0.9908 /0.9980 34.29 /0.9256 0.9908 /0.9980 

×4 32.03 /0.8921 0.9826 /0.9968 32.05 /0.8929 0.9828 /0.9968 32.03 /0.8924 0.9827 /0.9968 

Set14 

×2 33.49 /0.9165 0.9861 /0.9977 33.54 /0.9167 0.9861 /0.9977 33.53 /0.9170 0.9863 /0.9977 

×3 30.24 /0.8396 0.9738 /0.9954 30.30 /0.8408 0.9740 /0.9955 30.29 /0.8408 0.9739 /0.9954 

×4 28.49 /0.7788 0.9546 /0.9931 28.51 /0.7796 0.9548 /0.9932 28.54 /0.7802 0.9550 /0.9932 

BSDS100 

×2 32.10 /0.8981 0.9823 /0.9971 32.14 /0.8985 0.9824 /0.9971 32.13 /0.8985 0.9824 /0.9971 

×3 29.04 /0.8027 0.9666 /0.9943 29.07 /0.8033 0.9668 /0.9944 29.07 /0.8035 0.9668 /0.9944 

×4 27.53 /0.7334 0.9433 /0.9922 27.56 /0.7343 0.9436 /0.9922 27.55 /0.7344 0.9436 /0.9922 

Urban100 

×2 31.77 /0.9246 0.9873 /0.9966 31.90 /0.9260 0.9877 /0.9967 31.89 /0.9261 0.9877 /0.9967 

×3 27.91 /0.8467 0.9749 /0.9925 28.00 /0.8488 0.9753 /0.9926 27.99 /0.8491 0.9754 /0.9926 

×4 25.86 /0.7778 0.9542 /0.9887 25.94 /0.7809 0.9550 /0.9887 25.93 /0.7810 0.9550 /0.9887 
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Table 3. Performance comparison with the CARN-M[9] model. The red color shows the best performance and the blue color shows the 

second-best performance in terms of PSNR and SSIM [23] comparison. We also measure performance with MS-SSIM [27] and UQI [27] 

 

 

PSNR, structural similarity index (SSIM) [26], multi-

scale structural similarity index (MSSSIM) [27], and 

universal quality index (UQI) [27] to show the achieved 

result. We only utilize the PSNR and SSIM to show the 

best and the second-best results. The linear single-path 

module performs better than the multi-path upsample 

module. It has a very similar performance to the cubic 

single-path results. 

Shown in Table 3 are the results for the same 

experiments performed on the CARN-M [9] upsample 

module. The linear single-path and cubic single-path 

modules performed better than the multi-path module. 

However, the cubic single-path module performed 

slightly better than the linear single-path modules. Thus, 

the results show the effect the single-path modules have 

on sub-pixel convolution composed of group convolution. 

Figure 2 (a) and (b) show the visual representation 

implemented with the MDSR [6] and CARN-M [9] model 

respectively. Due to its computational complexity, cubic 

single-path was expected to outperform other algorithms, 

but linear single-path algorithm performs better in terms 

of PSNR and SSIM in the case of MDSR [6]. It might be 

that when downscaling the features’ channels for pixel 

shuffling, utilizing cubic interpolation generates 

unnecessary values. This is because it implements a 

polynomial curve to fit four reference points. Linear 

interpolation utilizing just two reference points is enough. 

However, the output features generated from group 

convolution are generated from separate input features. 

That is the reason cubic interpolation works better on 

CARN-M [9] by using four reference points to downscale 

the features in the channel axis. 

Although it increases the parameters, performance 

improvement can also be realized if we increase the 

number of channels of the feature to more than 42 × n 

before channel compression via interpolation downscale. 

 

V. CONCLUSION 

Through multi-scale multi-path SR analysis, we can 

identify the unshared and unbalanced parameter problems, 

formulate a solution by utilizing the advantages of 

interpolation algorithms, and exploiting sub-pixel 

convolution to its limit. 

We can conclude that the linear single-path technique 

is a more practical solution compared to the multi-path 

algorithm because it reduces and exploits all its 

parameters for all scale factors. It also shows similar 

performance with less computation compared to the cubic 

single-path algorithm. The proposed technique can be 

applied to existing multi-scale multi-path SR models, 

such as MDSR [6] CARN [9], and MPRNet [10] even if 

they utilize group convolution. 

Inspired by the results achieved from CARN-M [9], 

further research can be done by analyzing the group 

convolution in sub-pixel convolution to improve 

efficiency by reducing parameters and computation while 

maintaining good performance. 
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Dataset scale 
Multi-path Linear single-path Cubic single-path 

PNSR / SSIM MSSSIM /UQI PNSR / SSIM MSSSIM /UQI PNSR / SSIM MSSSIM / UQI 

Set5 

×2 37.61 /0.9587 0.9952 /0.9990 37.62 /0.9586 0.9951 /0.9990 37.64 /0.9586 0.9952 /0.9990 

×3 33.94 /0.9228 0.9903 /0.9979 33.92 /0.9227 0.9903 /0.9979 33.91 /0.9226 0.9903 /0.9979 

×4 31.69 /0.8870 0.9815 /0.9966 31.70 /0.8873 0.9817 /0.9966 31.63 /0.8867 0.9815 /0.9965 

Set14 

×2 33.24 /0.9142 0.9855 /0.9976 33.26 /0.9140 0.9855 /0.9976 33.23 /0.9142 0.9855 /0.9976 

×3 30.04 /0.8356 0.9729 /0.9952 30.05 /0.8355 0.9729 /0.9952 30.08 /0.8364 0.9731 /0.9953 

×4 28.30 /0.7736 0.9531 /0.9930 28.31 /0.7738 0.9531 /0.9930 28.30 /0.7739 0.9532 /0.9929 

BSDS100 

×2 31.93 /0.8960 0.9818 /0.9970 31.94 /0.8961 0.9818 /0.9970 31.93 /0.8960 0.9818 /0.9970 

×3 28.87 /0.7988 0.9657 /0.9942 28.88 /0.7988 0.9657 /0.9942 28.88 /0.7987 0.9657 /0.9942 

×4 27.35 /0.7278 0.9416 /0.9920 27.36 /0.7280 0.9416 /0.9920 27.37 /0.7281 0.9417 /0.9919 

Urban100 

×2 31.09 /0.9170 0.9856 /0.9962 31.09 /0.9171 0.9856 /0.9962 31.15 /0.9176 0.9857 /0.9962 

×3 27.35 /0.8331 0.9719 /0.9918 27.34 /0.8331 0.9719 /0.9918 27.39 /0.8339 0.9721 /0.9918 

×4 25.38 /0.7606 0.9488 /0.9876 25.38 /0.7607 0.9487 /0.9876 25.41 /0.7613 0.9491 /0.9876 
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(a) MDSR [6] model 

 

   

(b) CARN-M [9] model 

Fig. 2. Visual comparison with scale factor ×3 between the ground-truth, bicubic, and images restored by multi-path, and single-path 

algorithms implemented with the MDSR [6] model (a), and (b) CARN-M [9] model (b) respectively. Testing with the butterfly image 

from the Set 5 [20] dataset and the 2nd, 5th and, 42nd image from the Urban 100 dataset [23]. 
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