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I. INTRODUCTION  

AD (Alzheimer’s disease) is the most common form of 
dementia among the elderly [1]. Systematically, it is char-
acterized by the impairment of memory and other intellec-
tual abilities to such an extent that it affects the daily func-
tioning of life. Such neuropathy mainly occurs in the tem-
poral lobe, and a phenomenon accompanied by atrophy of 
the brain spreads to the entire brain [2-3]. 

Because the aging brain undergoes atrophy, it is difficult 
for even experienced radiologists to distinguish between 
normal age-related atrophy and Alzheimer's disease-medi-
ated atrophy [4]. Early onset of AD leads to atrophy of the 
hippocampus. Its dysfunction is believed to underlie the nu-
cleolar features of memory-impaired nitrates [5]. 

In the case of difficulty in the diagnosis of AD, here 
comes the true usage of image processing and machine 
learning. In this context, machine learning models provide 
great potential to capture even slight tissue alterations [6]. 
State-of-the-art models for image segmentation and classi-
fication are CNNs (convolutional neural networks), which 
have recently been applied to medical imaging data for var-
ious use cases [7].  

Specifically, the segmentation of the hippocampus re-
veals the affected spots of its complex structures and paves 

a path for the identification of AD. Recently, deep neural 
networks, and particularly CNN (convolutional neural net-
work), have shown superior performance to other machine 
learning techniques on computer vision tasks, particularly 
in semantic segmentation.  

The hippocampus has been automated segmented using 
a variety of algorithms [8-12]. Specifically, HippMapp3r 
[13], is an open-source, efficient whole hippocampal seg-
mentation pipeline based on 3D-CNNs that is robust to 
brain atrophy due to neurodegenerative changes. 

In case of AD diagnosis, increasing number of algo-
rithms have used 3D convolution for the classification and 
prediction of AD due to its excellent ability to capture fea-
tures from spatial information in 3D-MRI (magnetic reso-
nance images). However, the use of 3D convolution in-
creases the computational power requirements. Therefore, 
this study was aimed at developing a model with a high per-
formance and low computational cost for medical image 
applications involving SPT (shifted patch tokenization). 

The selection of segmenting and classification as based 
on hippocampal atrophy is due to early onset of AD leads 
to atrophy of the hippocampus. The training with the less 
datasets we collected leads to the application of SPT. The 
overall structure of this research is based on a training and 
validation with the fewer MRI dataset specific to the AD 

 
3D-CNN Method over Shifted Patch Tokenization for MRI-Based 

Diagnosis of Alzheimer’s Disease Using Segmented Hippocampus 
 

Aalfin Emmamuel1, Usman Asim1, Heungsik Yu1, Sungun Kim2* 

 
Abstract 

The application of a potential deep learning algorithm to the diagnosis of various neuropathic diseases such as AD (Alzheimer's disease) 
is attracting attention. This paper describes the implementation of a potential 3D-CNN (3D-convolutional neural network) network-based 
method for predicting hippocampal atrophy by applying deep learning technology to magnetic resonance imaging of Alzheimer's disease-
related patients. The proposed method is implemented by applying the HippMapp3r algorithm for hippocampal MRI (magnetic resonance 
image) segmentation from the original image and applying the EfficientNet tool to help determine AD. To increase the accuracy of judgment 
in this process, the shifted patch tokenization (SPT) method was proposed and also implemented. The proposed framework can be very 
helpful in diagnosing AD by showing 94% and 96% accuracy in training and test sets, respectively. 

Key Words: Alzheimer’s Disease, Shifted Patch Tokenization, Convolutional Neural Network, Hippocampus Image Classification. 

Manuscript received October 03, 2022; Revised November 08, 2022; Accepted November 09, 2022. (ID No. JMIS-22M-10-038) 
Corresponding Author (*): Sungun Kim, +82-51-629-6235, kimsu@pknu.ac.kr 
1UNOMIC, Busan, Korea, aalfin.es@unomic.com, usman.asim@unomic.com, paul.yu@unomic.com 
2Department of Information and Communications Engineering, Pukyong National University, Busan, Korea, kimsu@pknu.ac.kr 



3D-CNN Method Over Shifted Patch Tokenization for MRI-Based Diagnosis of Alzheimer’s Disease Using Segmented Hippocampus 

246 

 

and to implement the effective model minimize the overfit-
ting with reduced classification error. 

In this paper, to implement the pipeline of hippocampus-
based AD diagnosis, we segmented a whole hippocampus 
of the whole dataset through an algorithm based on 3D-
CNN (HippMapp3r); The SPT is proposed between the hip-
pocampal segmentation and the EfficientNet application 
process. It enhances the spatial invariance of the model; 
This has the effect of increasing the locality inductive bias 
by embedding more spatial information in each visual 
transformation. The segmented database was trained and 
validated through EfficientNet to diagnose deep features 
and provide a binary classification. The issue of overfitting 
is minimized with reduced classification error owing to 
dropout layers. The proposed pipeline delivers an excellent 
result with higher accuracy as is demonstrated in the confu-
sion matrix. 

 

II. RELATED WORKS 

Recently, image classification through CNN models 
have achieved high accuracy and even exceed the capabili-
ties of human recognition. The neural network focusing on 
medial temporal lobe including hippocampus provides the 
earlier diagnosis of AD. The comparison between different 
CNN models with various techniques has been motioned. 

Zhang et al. proposed mask-refined R-CNN to refine the 
object details in segmentation [14]. In this process, a frame-
work on a mask head is refined and alignment strides are 
adjusted in the region of interest. Using this process, medi-
cal images could also be segmented, and the process was 
integrated with a CNN named StoolNet [15]. The method 
proves color classification and maintains a balance between 
accuracy and computational complexity. As a result of the 
segmented image classification, more discrimination can be 
achieved than with the original image. 

In earlier stage, the data feed into the 2D-CNN model 
like Inception-v4 skull-stripped 2D image slices. Continu-
ing with the feature extraction they concatenate the local 
patient information features with Inception-v4 model fea-
tures and calculated the cross-entropy loss [16]. Then the 
multi-model deep CNN for automatic hippocampus seg-
mentation and classification in AD introduced. The 3D-
CNNs like RasNet and U-net used for hippocampal seg-
mentation and DenseNet for the features extraction of seg-
mented hippocampus. After, they perform weighted sum-
mation on the output features and feed it to the classifier 
layer [17]. Thus, the multi-model method outperforms the 
single-model and several other competing methods. To in-
crease the training accuracy by enhancing the hippocampus 
segmentation, LB (Laplace Beltrami) spectrum with the 
segmentation tool HippMapp3r were implemented with 

DenseCNN for classification [18]. This LB spectrum can be 
calculated by Riemannian manifold as: 

 ∆𝑓 = 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 (𝑓)), (1)
 
where, 𝑓 is the Riemannian manifold, which is the input 
for gradient and then divergence. These two types of (shape 
and DenseCNN features) were expanded and concatenated. 
This joined trained strategy provides the higher accuracy, 
but the complex architecture takes too many parameters to 
train and optimize. Potential features like squeeze-and-ex-
citation module [19]. The upcoming methods like multi-
rate signal processing [20] and spatiotemporal learning [21] 
for the multiple frame approaches are yet to be tested. In 
that case, the end-to-end deep 3D CNN for the multiclass 
AD biomarker identification task, using the whole image 
volume as input with a domain adaptation optimized the 
one-vs. -rest logistic regression enhanced the target domain 
and improved the classification probabilities [22].  

Since the number of tasks in domain adaptation is huge 
and optimization algorithm is requiring to speed-up the 
learning, spatial transformation networks [23] ware intro-
duced to transform the input features into more compact 
features with fewer parameters than those in standard con-
volution. Even though these methods improve accuracy, 
they usually require manual tuning, and still often yield 
suboptimal performance.  

Despite their computational efficiency, these methods 
are expensive because of CNN complexity, and prone to 
overfitting because of their high dimensionality. In compar-
ison, the previous classification models based on seg-
mented hippocampus with transfer learning models require 
a transfer model for every new domain, while the category 
based on the whole brain might not provide the early stages 
of atrophy. This indicates the need for SPT to classify hip-
pocampus atrophy more accurately based on different di-
mensions. The SPT can provide higher accuracy in the net-
work with small data when it is integrated in the pipeline. 
Furthermore, EfficientNet provides a faster prediction of 
AD diagnosis than other proposed networks. 

  

III. METHODOLOGY 

3.1. Proposed Pipeline 
Fig. 1 shows the high-level architecture of the proposed 

model. The overall pipeline can be divided into three major 
parts. First one is the data acquisition and preprocessing, 
second is hippocampus extraction with segmentation net-
work, third is the classification model to classify the AD.  
  
3.2. Data Acquisition and Pretreatment 

The data used in the study are actual samples collected 
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(during the research project) from medical institutions. T1 
weighted three-dimensional volumetric scans of 251 sub-
jects applicable for analysis were generated from MRI brain 
scan images of 258 subjects [171:NC (Normal Cognitive), 
AD: 87] and utilized. 

The acquisition parameters for the DICOM (Digital Im-
aging and Communications in Medicine) gradient echo se-
quence were: +200 slices; matrix. The whole data has the 
specific manual annotations performed by the experienced 
physician.  

After the data acquisition in DICOM format, we con-
verted the raw DICOM scan slices and then we converted 
to NIFTI (Neuroimaging Informatics Technology Initiative) 
the data according to doctor’s annotation and examination 
and converted the data structure into BIDS (Brain Imaging 
Data Structure) imaging. This converted and formatted 
MRI scans have the full head scan. 

Prior to training, all images were bias field corrected for 
B1-inhomogeneities standardized to have a zero mean and 
unit variance within a local neighborhood of 50 voxels us-
ing c3d (Convert3D) tool [24]. We opted for neighbor-hood 
normalization instead of global image normalization to bet-
ter preserve local features.  

  
3.3. Hippocampal Segmentation 

The hipppmapp3r [23] consists of a serial ensemble of 
two networks, an initial network trained on the whole brain 
and a second network with the same architecture trained on 
the first network's output. It employs skip connections to 
combine feature maps across stages through concatenation. 
Every contraction step doubles the number of filters in the 
network, with a depth of five and 16 initial filters. The 
building blocks of the networks are convolution blocks, 
consisting of a convolution layer followed by a normaliza-
tion layer and a nonlinearity. The leaky ReLU (rectified lin-
ear activation unit) was chosen as an activation function 
with a negative slope of 10−2 for the feature map convolu-
tions [25]. Due to class imbalance data, applied weight map 
enact to the categorical cross-entropy loss function. Hipp-
Mapp3r was validated against four other publicly available 
state-of-the-art techniques (HippoDeep, FreeSurfer, SBHV, 

volBrain, and FIRST). With an average dice and correlation 
coefficient of 0.89 and 0.95, HippMapp3r outperformed the 
other techniques on each metric. 

 
3.4. Shifted Patch Tokenization 

The SPT [26] provides a wider receptive field to the 
model to be trained with higher accuracy and the effective 
spatial modeling that tokenizes spatially shifted images to-
gether with the input image. The SPT is proposed between 
the hippocampal segmentation and the EfficientNet appli-
cation process. It enhances the spatial invariance of the 
model; This has the effect of increasing the locality induc-
tive bias by embedding more spatial information in each 
visual transformation. For every given image, the SPT will 
spatially shift the image in four diagonal directions, that is, 
up-left, up-right, down-left, and down right. In this paper, 
this shifting strategy is named S for convenience. The 
shifted features are cropped to the same size as the input 
image and then concatenated with the input. As shown in 
the Fig. 2, This process was done for three dimensions of 
the MRI image (axial, sagittal and coronal). Spatial shift 
only by patch-sized clauses in 4 diagonal directions relative 
to the input image (=S). This can be shown as:  

 𝑆(𝑥) = 𝑃(ሾ𝑥𝑠ଵ, 𝑥𝑠ଶ, … 𝑥𝑠ேೞሿ), (2)
  

here, sN is shifted images, where P is the concatenation of 
patches into single image. As a result, SPT can embed more 
spatial information into visual tokens and increase the lo-
cality inductive bias of visual transformation. As a result, 
the network is fine-tuned to ensure that it achieves maxi-
mum accuracy, but it is also penalized if it is computation-
ally intensive. 

After the process of image shifting, then concatenate 
with the given input of the EfficientNet-B0, after the con-
catenated images divided into non- overlapping patches as 
standard EfficientNet-B0 input.  

Fig. 1. Overall architecture of proposed method. 

  

Fig. 2. The architecture of spatial transformation of 3D segmented
hippocampus datasets. 
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3.5. Model Architecture and Contributions 
CNNs are commonly developed at a fixed resource cost, 

and then scaled up to achieve better accuracy when more 
resources are made available. EfficientNet [27], proposes a 
novel model scaling method that uses a simple yet highly 
effective compound coefficient to scale up CNNs in a more 
structured manner. Powered by this novel scaling method 
and recent progress on AutoML (Automated Machine 
Learning), they have developed a family of models, called 
EfficientNets, which super pass state-of-the-art accuracy 
with up to 10×better efficiency (smaller and faster). The pri-
mary step in the compound scaling method is to perform a 
grid search to find the relationship between different scaling 
dimensions of the baseline network under a fixed resource 
constraint [e.g., 2×more FLOPS (Floating-point Operations 
per Second)] with the parameters of 7.8 million and 0.7 bil-
lion FLOPS. MBConv is the main building block of this net-
work, to which squeeze-and-excitation optimization is 
added. The MBConv algorithm is like the residual inverted 
blocks used in MobileNet v2. In a convolutional block, they 
form a shortcut between the beginning and the end. For en-
hancing the depth of the feature maps, 1×1 convolutions are 
used first to expand input activation maps.  

To reduce the number of channels in the output feature 
map, 3×3 Depth-wise convolutions are followed by Point-
wise convolutions. Shortcut connections connect narrow 
layers whereas skip connections connect wider layers. As a 
result of this structure, the overall number of operations is 
reduced, and the model size is decreased. 

As a result of this structure, the overall number of opera-
tions is reduced, and the model size is decreased (Fig. 3). 
This determines the appropriate scaling coefficient for each 
of the dimensions mentioned above. Then apply those co-
efficients to scale up the baseline network to the desired tar-
get model size or computational budget. Therefore, we can 
define a CNN layer as:  

 𝑁 = ⨀௜ୀଵ…௦ 𝐹௜௅೔൫𝑋〈ு೔,ௐ೔,஼೔〉൯, (3)
 
where 𝐹௜௅೔  denotes the layer 𝐹௜   is repeated 𝐿௜  times in 
stage, 〈𝐻௜, 𝑊௜, 𝐶௜〉 denotes the shape of the input tensor X 

layer 𝑖. 
 

IV. EXPERIMENTS AND RESULTS 
ANALYSIS 

4.1. Training and Validation 
Prior to perform AD classification model we performed 

the hippocampus segmentation and extracted the hippo-
campus of all the data. The input of the classification net-
work is the output of hippocampus segmentation results.  

The proposed classification model was trained for 100 
epochs and the validation were set to every 2 epochs after. 
We used the Adam optimizer [28] with an initial learning 
rate of 1 ൈ 10ିଷ, the patience of 100 epochs for the vali-
dation loss and a learning rate drop (decay factor) of 0.5. 
We also use the SiLU activation function from Eq.4. 188 
(~70%) were used for training, 64 for testing and 0.9216 for 
validation during training. 

All the network architecture pipeline and their optimiza-
tion were implemented using compound coefficient, deep 
learning framework based on Docker container with 
MONAI (PyTorch-based, open-source framework for deep 
learning in healthcare imaging), EfficientNet with the py-
thon version 3.8 CUDA. For hardware we used the NVIDIA 
DGX A100 GPUs. 

  𝑠𝑖𝑙𝑢(𝑥) = 𝜎(𝑥), (4)
  

where σ(x) is the logistic sigmoid. 
The classification process is fully automatic. The pro-

posed model showed 94% accuracy on training data and 96 
% accuracy on the testing dataset. The SPT was effectively 
improved the locality inductive bias of the training network 
by increasing the accuracy rate from 87%−94% (Fig. 4). 
Models like ResNet can be scaled up from ResNet-18 to 
ResNet-200 by increasing the number of layers. The con-
ventional practice for model scaling is to increase the CNN 
depth or width arbitrarily or to use larger input image reso-
lution for training and evaluation. Despite improving accu-
racy, these methods usually require tedious manual tuning 
and still yield suboptimal results. 

Fig. 3. The baseline network EfficientNet architecture for AD classification.  
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4.2. Evaluation Measures  
To evaluate the proposed model, use three different eval-

uation measures. First, Sensitivity (equation (5)) is a meas-
ure of how well a machine learning model can detect posi-
tive instances. The true positive rate (TPR) is also called the 
recall rate. The sensitivity of a model is used to evaluate its 
performance because it shows how many positive instances 
the model was able to correctly identify. Second, Specific-
ity (equation (6)) measures the proportion of true negatives 

that are correctly identified by the model. Consequently, 
there will be another proportion of actual negatives that got 
predicted as positives and could be called false positives. 
This proportion also be called as True Negative Rate 
(TNR). 

  𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ൅ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒ൗ . (5)
 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ൅ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒ൗ . (6)
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 ൅ 𝑇𝑁 𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁ൗ . (7)

  
Specifically, each subject was represented as two sets 

(left/right hippocampus) of three-dimensional objects. The 
optimizers used to change the attributes of neural networks 
such as weights and learning rate to reduce losses. 

In this experiment, the determination is to provide an op-
timized treatment to the patient based on the analyzed con-
tent. As expected, the EfficientNet provide the best result 
for the deeper architectures and the threshold of 0.99 was 
applied to the boundary area detected during the test. We 
also observed some overfitting in the training data.  

However, the performance differences in Dataset be-
tween validation and test sets were small, indicating that we 
appropriately mitigated this problem. In this research, we 
attempted to classify AD and NC functions based on hippo-
campus morphological features using machine learning al-
gorithms. It is also proven its usefulness in discriminating.  

  
4.3. Model Comparison 

To verify the superiority of the proposed method, it was 
compared with the existing methods that reported the bi-
nary and ternary classification with higher accuracy. As 
shown in Table 1, the binary classification performance of 

Table 1. Comparison with state-of-the-art methods. 

Author Processing and training Classification Modalities Accuracy 
(Eq:7) 

Sensitivity 
(Eq:5) 

Specificity
(Eq:6) 

Basaia et al. (2019) [30] Whole Brain CNN 
AD-NC, 
AD-MCI, 
MCI-CN 

99.21) 
75.4 
87.1 

98.9 
74.5 
87.7 

99.5 
76.4 
74.6 

Wang et al. (2021) [31] Hippocampus- 
based biomarker Dense CNN AD-NC 89.8 98.5 85.2 

Liu et al. (2019) [16] Segmented 
hippocampus 

Multi-model 
CNN AD-NC 88.9 86.6 90.8 

Katabathua et al. (2021) [15] Hippocampus atrophy DenseCNN2 AD-NC 92.5 88.2 94.9 
Zhang et al. (2021) [32] Whole brain CAM-CNN AD-NC 97.3 97.1 99.7 

Proposed method Hippocampus atrophy Efficient Net AD-NC 962) 96.9 100 
1) Best accuracy in whole brain AD classification. 
2) Best accuracy in hippocampus atrophy AD classification. 

(a) 
 

(b) 
Fig. 4. Accuracy and loss value of training (a) and validation (b).
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the proposed method achieved 96%. Compared to the per-
formance presented in references related to the hippocam-
pal atrophy, the proposed model shows comparatively 
higher atrophy. Whole brain atrophy classification with 
CNN and Cam-CNN model performs with better accuracy 
rates. In case of comparing the hippocampal atrophy and 
whole brain atrophy classification models, the atrophy in 
hippocampus with thalamus region shows the early stages 
of dementia [29]. The preliminary stages of atrophy cannot 
be identified with higher accuracy by the diagnosis of 
whole brain. Achieving the highest accuracy using CNN 
though hippocampus atrophy with small data was a big 
challenge. Reducing the segmentation and prediction time 
was hurdled up because it was considered as an important 
criterion for this pipeline. Choosing the EfficientNet for the 
robust in transfer learning becomes the important implica-
tion for high accuracy with the reasonable amount of com-
putation which includes ~3 minutes for the segmentation 
process and 0.09 seconds for the prediction of AD using the 
segmented hippocampus. The reason why the test accuracy 
is higher than the training set is due to training and valida-
tion splitting. Validation examples are small number of data 
instances compared to training set. We performed training 
on training data (~74%) and test it few numbers of exam-
ples (~26%), due a smaller number of overall datasets. Oth-
erwise, training on dataset with large number of instances 
and with average splitting of training and testing dataset 
achieve the balanced accuracy. The SPT provides the effi-
cient amount of data by converting the single image into 
multiple patches of images. This process becomes the back-
bone for the higher accuracy in training and validation. 
Comparing to the previous research on SPT [20] using the 
spatial transformation outside the training model provides 
the precise and time-consuming model architecture. Com-
paring the state-of-art methods mentioned above, our clas-
sification model provides the higher classification accuracy 
in hippocampal atrophy and comparatively higher accuracy 
with whole-brain and big data like ADNI dependent meth-
ods due to the spatial transformation and EfficientNet ar-
chitecture. 

  

4.4. Confusion Matrix 
There are separable convolution layers in depth to reduce 

the number of parameters and computations to a smaller ex-
tent. It is possible to achieve excellent classification accu-
racy using EfficientNet. It obtains deep image information 
and reconstructs dense segmentation masks for brain clas-
sification of AD with NC (Fig. 5).  

The performance of the network was tested using pre-
processing, SPT, and classification on T1 weighted MRI. 
Comparison between the proposed approach and existing 
deep learning methods shows a higher classification 
accuracy. The reason for adding more AD data is the data 

contains more early stages of AD and brain atrophy called 
MCI (Mild Cognitive Impairment). It is a challenge to di-
agnose the early stage of AD. As the correlation between 
the true label and the predicted label for AD and NC is 0, 
we assume that the classification model predicts the AD 
even in early stages. In that case, the small data of NC may 
not lead to the model bias. Despite requiring fewer training 
samples, it delivers excellent results as is demonstrated in 
the confusion matrix. By reducing classification errors due 
to dropouts, overfitting is minimized. 

  

V. CONCLUSION 

In this work, the hippocampal segmentation and AD-NC 
classification using 3D-CNN is proposed. The U-Net model 
was found to be able to extract the voxels of hippocampus 
and the EfficientNet provides the higher classification ac-
curacy for AD-NC. Integrating the SPT in the pipeline al-
lows the network to provide the higher accuracy with the 
small data. It has also been found that the EfficientNet pro-
vides the faster prediction of diagnosing the AD comparing 
other network proposed. In future aspects, we try to make 
the model to provide its full potency in few iterations [15]. 

To implement the diagnostic model into a commercial 
scale, the package will be built and introduced as a software 
and a mobile application. This will provide fast and easy 
access to the patients to overview the AD diagnosis. In this 
context, we can bale to provide an end-to-end pipeline for 
the classification of AD with higher prediction value which 
will assist the physicians and the experts to diagnose the 
Alzheimer’s Disease. 
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Fig. 5. Confusion matrix for test data. 
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