
Journal of Multimedia Information System VOL. 9, NO. 4, December 2022 (pp. 261-268): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.4.261

261

I. INTRODUCTION

Recently, NAND flash memory based Solid-State Drives
(SSDs) are widely used as a storage device because of its
outstanding performance compared to Hard-Disk Drives
(HDDs). However, SSDs suffer from physical constraints
of NAND flash memory such as erase-before-write and
limited erase count. To address these limitations and sup-
port identical block-based interface with HDDs, the con-
ventional SSDs employ an internal software, Flash Trans-
lation Layer (FTL) which supports out-place update and
garbage collection. The garbage collection reserves free
space by erasing invalid data incurred by out-place update.
Here, because the erase unit (NAND block) of NAND flash
memory is larger than the read/write unit (NAND page),
valid pages of an erase block must be copied to another
block during garbage collection. As a result, write amplifi-
cation is induced, shortening the lifespan of the SSD.
Therefore, many studies are conducted to alleviate the gar-
bage collection overhead by writing data with similar up-
date pattern to the same NAND block to reduce the number
of valid page copies during garbage collection [18-19].
However, because of the inherent limitation of the tradi-
tional block interface that host-side information cannot be

delivered to the SSD, it is hard to understand the data char-
acteristic inside the SSD. As a result, new storage interfaces
such as Open-channel SSD [13] and Zoned Namespace
(ZNS)[5] are proposed for the host-managed SSD where
the host-side FTL directly manages data placement and var-
ious SSD internal operations instead of a firmware-level
FTL.

In particular, the zone-based interface of ZNS is stand-
ardized in NVMe specification [20] and is expected to re-
place the conventional block-based interface. In the ZNS
SSD, NAND flash memory space is divided into zones
which have sequential write constraint and can be directly
specified for read/write request by the host. Therefore, the
host can allocate zones separately for different I/O streams
to reduce performance interference between them and gar-
bage collection overhead. On the other hand, legacy file
systems still do not fully utilize the characteristics of ZNS
SSDs.

Especially, in this paper, we focused on the journaling
system of the journaling file system including Ext4 [1].
When a write request is issued on the journaling file sys-
tems, a log of the write request, called as the journal, is per-
manently recorded to a separate journal area before the re-
quested data is written in the storage device. In case of sud-

Separating the File System Journal to Reduce Write Amplification of

Garbage Collection on ZNS SSDs

Young-in Choi1, Sungyong Ahn1*

Abstract

Solid-State Drives (SSDs), despite their outstanding I/O performance, suffer from the garbage collection overhead incurred by out-place
update scheme that addresses the erase-before-write constraint of NAND flash memory. The Zoned Namespace SSD (ZNS SSD) is a state-
of-the-art storage technology that divides NAND flash memory space within an SSD into zones and allows the host to directly assign certain
zone for a write request. Therefore, the ZNS SSD can minimize the garbage collection overhead by allocating data with similar update patterns
to the same zone. However, legacy journaling file systems still cannot actively exploit the advantages of ZNS SSDs, and journal data and file
data with obviously different update patterns are written together in the same zone. In this paper, we propose new file system journal place-
ment scheme that separates journal data into a dedicated zone to minimize write amplification due to garbage collection, noting the charac-
teristics of journal data in the Ext4 file system. The proposed scheme is implemented in Linux kernel and carefully evaluated. The evaluation
results show that our scheme removes the unnecessary copying of journal data during garbage collection of ZNS SSD and reduces the valid
page copies caused by garbage collection by up to 26.8%.

Key Words: Ext4 File System, Zoned Namespace SSD, NAND Flash Memory, Journaling, Dm-Zoned.

Manuscript received December 20, 2022; Revised December 24, 2022; Accepted December 25, 2022. (ID No. JMIS-22M-12-052)
Corresponding Author (*): Sungyong Ahn, +82-51-510-2422, sungyong.ahn@pusan.ac.kr
1School of Computer Science and Engineering, Pusan National University, Busan, Korea, everimind4@gmail.com, sungyong.ahn@pusan.ac.kr

Separating the File System Journal to Reduce Write Amplification of Garbage Collection on ZNS SSDs

262

den power loss or system crash, the journal is used to re-
cover the lost data and maintain the consistency of the file
system [2]. However, after a write request is successfully
completed in the storage device, the associated journal is
rarely used. Moreover, outdated journals will be overwrit-
ten by new journals in the near future. Therefore, journals
can be said to have different access patterns from file data.

Therefore, the garbage collection overhead of ZNS SSDs
can be reduced by separating journal data and general file
data into different zones. However, dm-zoned [6], device
mapper of Linux kernel which emulates ZNS SSDs to block
storage for legacy filesystems, does not separate journal
data. In this paper, we propose a simple and effective place-
ment method to reduce the garbage collection overhead of
ZNS SSDs by separating journal data and file data physi-
cally for journaling file system.

In this paper, we propose a simple and effective data de-
ployment method to separate journal data into journal ded-
icated zones by exploiting information about journal data
delivered from Ext4 file system and JBD2 daemons. This
method was implemented by modifying dm-zoned and Ext4
file system in Linux kernel. In the modified version of dm-
zoned, a journal zone for writing journal data was allocated
separately and excluded from garbage collection of the
ZNS SSD. Experimental results show that the proposed
method eliminates unnecessary copying of journal data dur-
ing garbage collection and improves I/O performance by
reducing garbage collection overhead.

The rest of this paper is organized as follows. In Section
2, we briefly describe the background of the ZNS SSD and
dm-zoned. Then, Section 3 introduce related works which
reduces garbage collection overhead of SSDs by using host-
side information or host-side FTL. In Section 4, we present
the proposed scheme to separate journal data from file data
for the ZNS SSD. The experiment results are presented in
Section 5. Finally, we conclude the paper in Section 6.

Ⅱ. BACKGROUNDS AND MOTIVATION

2.1. ZNS SSD and Dm-Zoned
ZNS SSD is a new emerging type of SSD using zone-

based interface instead of conventional block-based inter-
face. In the ZNS SSD, the flash memory area is divided into
multiple zones that must be written sequentially and ex-
posed to the host. Moreover, unlike conventional block-in-
terface SSDs, the host directly can manage the data place-
ment and garbage collection. Therefore, the garbage collec-
tion overhead of ZNS SSDs can be minimized by optimized
data placement using host-side information such as file type
and correlation between files.

However, the legacy file systems such as Ext4 file sys-
tem cannot use ZNS SSD directly because they are desi-

gned for block-interface storages. For that reason, the latest
Linux kernel provides dm-zoned, a device mapper that al-
lows ZNS SSDs to be used like conventional block storage
devices, as you can see in Fig. 1.

The dm-zoned combine conventional block-based SSD
and ZNS SSD into one virtualized block-based storage de-
vice. And virtual block storage device is divided into the
same zone size as ZNS SSDs. The zones in conventional
SSD are called ‘Conventional Zones’ that can be written
randomly, the other zones in ZNS SSD are called ‘Sequen-
tial Zones’ that can only be written sequentially. The con-
ventional zone of block-based SSD caches data from the
ZNS SSD and stores internal metadata related to the virtual
storage device.

The dm-zoned manages the logical address space of the
device based on a chunk, which is a logical unit of the same
size with a zone. When a write request with a logical ad-
dress occurs, the chunk number is calculated from the logi-
cal address, and the request is sent to the zone mapped to
the corresponding chunk. If there is no zone mapped to the
chunk, new conventional zone is allocated and mapped to
the chunk. And after the mapping, all write requests about
the chunk are sent to the zone mapped to the chunk.

The dm-zoned performs reclaim operations to prevent
the lack of allocatable conventional zones. Since most write
requests are redirected to the conventional zone, it is im-
portant to maintain free conventional zone through reclaim
operation. If a reclaim request occurs for a conventional
zone, collect all valid data in the zone, select an empty se-
quential zone, and delete the data of the zone to be re-
claimed.

And after copying data to the sequential zone, the data
cannot be updated directly due to sequential write con-
straints of ZNS SSD. Therefore, if a update request is issued,
another conventional zone is allocated as a buffer of the se-
quential zone, and the data is updated the corresponding
conventional zone. That is, two zones are mapped to single
chunk. After the updated data is written in the associated
buffer zone, the outdated data in the sequential zone is in-
validated. And when a reclaim request is occurs for freeing
conventional zone used as a buffer, valid data in sequential
zone and valid data in corresponding buffer are merged and

Fig. 1. Overview of dm-zoned in Linux kernel.

Applications

Legacy File Systems Zone-aware
File Systems

Device Mapper
(dm-zoned)

Block I/O Layer

Zoned Namespace SSD

Emulated block device

Journal of Multimedia Information System VOL. 9, NO. 4, December 2022 (pp. 261-268): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.4.261

263

copied into the new sequential zone. As the amount of data
copied in this process increases, the write amplification of
the ZNS SSD becomes more severe and consumes P/E
(Program/Erase) cycle of SSD unnecessarily.

2.2. Journaling in Ext4 File System

The journal overwrites fixed space repeatedly, and after
changes of file system which is journal contains is written
to the storage device permanently, corresponding journal is
rarely used. However, the traditional method of using Ext4
file system on ZNS SSD via dm-zoned results in unneces-
sary copies of journal data. Fig. 2(a) shows the processing
of reclaim operation before present dm-zoned architecture.
Because journal data and general file data are stored with-
out distinction, the reclaim operation copies the journal data
to another zone.

Fig. 3 shows the zone where the journal is actually stored
is changed continuously, even though the journal continues
to use the same logical address space. Thus, by modifying
the way dm-zoned behaves, it is possible to prevent copying
of journal data and extend the life of the SSD by separating

journal data into separate zones and setting it not to be re-
trieved, as shown in Fig. 2(b).

Ⅲ. RELATED WORKS

In this section, we examine the previous studies and tech-
niques for improving the performance of SSDs using host
information.

3.1. Multi-Streamed SSDs

The Multi-Streamed SSD [7] is an kind of SSD that par-
tially discloses the internal behaviors of the SSD to the host.
Multi-Streamed SSD allows the host to specify stream
number when write requests are issued by using a stream-
based interface. So, write requests associated to different
stream are written to different blocks in NAND flash
memory. Fig. 4(a) shows that data from different applica-
tions can be mixed in a single block, increasing garbage
collection overhead in the conventional SSD. However, the
multi-streamed SSD can appropriately identify the update
pattern of the data by using stream number specified by the
host as described in Fig 4(b). As a result, the lifetime and
performance of the multi-streamed SSD can be improved
by preventing data having different update pattern is mixed
in a single block.

AutoStream [8] proposes a method of automatically as-
signing streams instead of directly managing them. As the
amount of data to be managed increases, the update pattern
of data becomes more and more complicated, and it be-
comes difficult to allocate streams. Therefore, in that paper,
to reduce the stream management overhead, they used a
method of automatically allocating streams by grasping the

(a) Before journal separation

(b) After journal separation

Fig. 2. Overview of the reclaim operation.

(a) Conventional SSD

(b) Multi-streamed SSD
Fig. 4. Comparison of conventional SSD with multi-streamed
SSD.

SSD

. . .

Block 1 Block 2 Block 3 Block 4

.

Application 2 Application 3Application 1

SSD

. . .

Block 1 : Stream C Block 2 : Stream A Block 3 : Stream B Block 4 : (None)

.

Application 2 : Stream B Application 3 : Stream CApplication 1 : Stream A

Fig. 3. Zone number used for journal write requests.

0
3
6
9

12
15
18
21
24
27
30
33
36
39

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Zo
ne

Time

Separating the File System Journal to Reduce Write Amplification of Garbage Collection on ZNS SSDs

264

characteristics of the actual input/output operation in real
time when it is being performed.

FStream [9] proposes a method of allocating and manag-
ing streams at the file system layer. The file system logi-
cally stores general file data and file metadata separately
but does not store them physically on the actual flash
memory. So, FStream proposes a method of separating gen-
eral file data and file metadata into separate streams.

PCStream [10] proposes a method of tracking ‘write()’
system call to group data with similar update patterns. Alt-
hough general stream allocation techniques distinguish data
by characteristics such as access frequency of data, but,
PCStream used a method of allocating streams after pre-
dicting the lifetime of the data each time a write() system
call is called.

vStream [11] proposes a method of allocating and man-
aging streams regardless of the number of physical streams
by generating virtual streams, noting that the number of al-
locatable streams in a typical SSD is limited.

DStream [12] proposes a method of adjusting the number
of streams according to workload, noting that existing
stream-related studies only considered the case of efficient
use of fixed streams. By using the system resources saved
through this as the mapping table cache of SSDs, a method
of improving the performance of SSDs was used.

3.2. Open-Channel SSDs

Open-Channel SSD [13] is a storage platform that can
make internal data structures completely public to the hosts.
Because the physical address space is completely opened,
there are advantages which is the host can leverage all re-
source of SSDs, but the disadvantage is that all resources
has to be managed by hosts. For example, SSDs are com-
posed of multiple flash memory chips and flash memory
chips are connected to controller in parallel. Therefore, this
parallelism must be ensured in order to fully utilize the

performance of Open-Channel SSDs.
LightNVM [14] is a sub system of Linux kernels for

Open-Channel SSD, which is minimizing resource manage-
ment overhead on Open-Channel SSDs. LightNVM con-
tains Host-level FTL, ‘pblk’, which is mapping logical ad-
dresses onto physical address on Open-Channel SSDs. The
Open-Channel SSDs may be used like conventional block
device through pblk.

SSW [15] proposed a method that prioritized sequential
writes suitable for SSDs in an Open-Channel SSD environ-
ment. By checking the metadata of the file system, The
SSW distinguish between sequential writes and random
read/write tasks, and use a method of reducing garbage col-
lection by appropriately assigning sequential write tasks to
multiple channels.

Ⅳ. SEPARATING JOURNAL PLACEMENT

In this section, we describe design changes of dm-zoned
to prevent unnecessary copying of journal data and to re-
duce garbage collection overhead by separating journal data
into journal-only zone on the virtual block devices emu-
lated through dm-zoned.

4.1. Dm-Zoned I/O Routine

The dm-zoned combines Conventional SSD and ZNS
SSD to create a virtual block device. Since the Ext4 file sys-
tem is mounted on a virtual device generated by dm-zoned,
I/O request of the Ext4 file system are submitted to the vir-
tual device. And at that time, I/O request is submitted
through Block Layer I/O function submit_bio().

I/O requests submitted to the virtual device are redirected
to the physical device to which the physical data is stored.
In this case, the function determining the physical device
and zone where I/O requests is processed is dmz_ map().

Fig. 5 illustrates how dmz_map() works during original

Fig. 5. Dm-zoneI/O routine for separating journal placement.

Journal of Multimedia Information System VOL. 9, NO. 4, December 2022 (pp. 261-268): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.4.261

265

I/O routine in the dm-zoned. The first zone allocated is the
conventional zone, and the write request to the sequential
zone is redirected to the conventional zone mapped to the
sequential zone as a buffer. That is, most of the write re-
quests are transmitted to the conventional zone. Also, about
I/O routine, noting that when the I/O request is submitted,
there is a process of checking whether there is a mapped
zone and then obtaining mapping information.

4.2. Separating Journal from File Data

In the Ext4 file system, when I/O request is occurred at
user space, it is submitted to block layer first. At this step,
block layer transmits the information of I/O request through
struct bio. This structure is created and used from a function
that processes I/O requests in the File system at first and is
maintained until the I/O request is processed at the end.

 Therefore, declare a member variable into struct bio to
store metadata indicating the request file write request of
ext4 file system, and metadata indicating the request journal
write request. These metadata are used in the process of
mapping Zones during the I/O Routine discussed in Section
4.1.

As you can see in Fig. 5, if the flag indicating a journal
is enabled in the struct bio of certain write request, a sepa-
rated process for the journal write request is executed. For
the first journal write request, a new conventional zone is
allocated, then the request is processed. And after then, all
journal write requests are then redirected to that zone.

4.3. Allocation of Journal-Only Zone

In dm-zoned, all random write request are redirected to
conventional zones. Moreover, an empty conventional zone
is allocated upon first write request for a chunk to which the

zone is not mapped. This is same for the journal data. Thus,
when a conventional zone is allocated for the first journal
write, an information indicating that it is a journal-only
zone is stored in the metadata of the zone additionally. Ac-
tually, At time 1 in the Fig. 6-❶, the first journal write re-
quest is submitted. For handle this, Zone 2 is allocated as
journal-only zone.

4.4. Garbage Collection Policy for Journal-Only Zone

In dm-zoned, the zones are reclaimed with Least Re-
cently Used (LRU) Algorithm. That is, the mapped conven-
tional zone list is iterated, and the most previously used
zone is determined as a reclaimed target. However, in the
proposed design, if the metadata of zone indicating a jour-
nal-only zone, the corresponding zone is never selected as
reclaimed target. That is, if the reclaim operation occurs,
reclaim target will be selected from among the mapped con-
ventional zone list exclude journal-only zone.

Fig. 6-❷ illustrates this. At Time 7, there is two mapped
conventional zone in the list. But one of them is the journal-
only zone, therefore the other zone is selected to the victim
zone to reclaim. Thus, Zone 4 is reclaimed, and then the
valid data remained in Zone 4 is copied to sequential zone
6.

That is, journal-only zone is never reclaimed. Further-
more, because journal-only zone exists in the mapped con-
ventional zone list, journal-only zone is never allocated for
other write requests. As a result, there is no write requests
can access the journal-only zone except for journal write
request.

Additionally, the data copied to the sequential zone due
to reclaim cannot be directly modified by sequential write

Fig. 6. Overview of allocation and garbage collection policy for journal-only zone.

Separating the File System Journal to Reduce Write Amplification of Garbage Collection on ZNS SSDs

266

constraints. Therefore, as we explained above, conventional
zone is mapped to sequential zone as a buffer for handling
random write request.

At time 9 in Fig. 6-❸, Write request of App 1 is submit-
ted. Especially, App 1 is mapped to sequential zone 7, It
cannot update directly. To handle this, conventional zone 5
is mapped to sequential zone 7 as a buffer, and then updated
data is redirected to buffer zone 5.

V. EXPERIMENTAL RESULTS

The experimental environment is described in Table 1.
As you can see in Table 1, the proposed methods are imple-
mented in Linux kernel 5.10.136 and evaluated by using
4GB ZNS SSD emulated by using qemu-based SSD emu-
lator, FEMU 7.0 (Flash EMUlator) [16]. Note that FEMU
emulates SSD device in the virtual Linux machine. Also,
you can see both hardware specifications of the host system
and emulated virtual Linux system in Table 1. For evalua-
tion, the dm-zoned device mapper emulated block device
consisting of 1GB block storage device and 4GB ZNS SSD.

The FIO [17] benchmark (version 3.33) is used to gener-
ates various synthetic I/O workloads such as sequential
read/write, random read/write to evaluate the I/O perfor-
mance of storage devices. In the Ext4 filesystem, journal
write requests are incurred by file system write requests, so
we executed only sequential and random write workloads
to evaluate the proposed journal separating scheme.

5.1. Write Amplification Due to Garbage Collection
Fig. 7 shows the amount of journal data copied in current

dm-zoned during garbage collection. According to the fig-
ure, journal data copying accounts for up to 48.5% of addi-
tional write incurred by garbage collection. It means that
unnecessary journal data copying is exacerbating the gar-
bage collection overhead.

Therefore, we can see that the proposed journal separa-
tion scheme can reduce the amount of data copied during
garbage collection by at least 14% and at most 26.8% in Fig.
8. According to the experimental results, the proposed
scheme has an effect of reducing write amplification in-
curred by garbage collection regardless of journal mode and
workload.

The result represented in Fig. 8 may not seem to have a
significant effect compared to the previous experiment for
the result represented to Fig. 7. It is because copied amount
of journal data in Fig. 7 is around 50% at most. This result
is due to the hided internal behavior of the dm-zoned. In the
dm-zoned, the reclaim operation is triggered with special
conditions which is few remaining conventional zones. But
this behavior is invisible to the Ext4 file system. In sight
from Ext4 file system, there is only logical chunks in the
emulated block storage device, which is Ext4 file system

Table 1. Experimental setup.

Host system

CPU
Intel (R) Xeon (R) Gold 5218 CPU 2.30 GHz×
2 (64 Threads)

Memory 128 GB

Virtual Linux system emulated by FEMU

CPU 48 Cores
Memory 100 GB

OS Linux Kernel 5.10.136

Storage
1 GB conventional SSD
4 GB ZNS SSD

FIO configuration

I/O engine Libaio, psync
Direct I/O Enable
I/O Depth 32
Block size 4 K

Workloads
Random write (Uniform, Zipf, Pareto, Gaussian
dist.)
Sequential write

Fig. 7. The amount of journal data copied during garbage collec-
tion in the current dm-zoned.

Fig. 8. The reduction ratio of data copied during garbage collec-
tion in the proposed methods.

Journal of Multimedia Information System VOL. 9, NO. 4, December 2022 (pp. 261-268): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.4.261

267

mounted, and the chunks remained fixed however the phys-
ical zones mapped to the corresponding chunk are re-
mapped continuously. Thus, there was a deviation in meas-
uring the amount of data copying each time, so the average
of the results measured five times is shown in the Fig. 8.

Summarizing the results, as shown in Fig. 7, before the
introduction of journal-only zone, journal data copied ac-
counted for about 10 to 30% of the total data copy amount,
except for the highest ratio value. Also, looking at Fig. 8,
the after introducing the journal-only zone, the total data
copy amount decreased by 13%−27%, similar to the ratio
of journal data copied in Fig. 7. This means that journal data
copied can be effectively removed with our proposed
method.

5.2. I/O Performance

Moreover, Fig. 9 compares the I/O performance of cur-
rent dm-zoned and the proposed scheme. Note that Fig. 9(a)
and Fig. 9(b) shows I/O performance of Ext4 file system
with different journaling modes, respectively. In the case of
the ordered mode (in Fig. 9(a)), where journal data is gen-
erated only for metadata update, there is no significant I/O
performance improvement due to the small amount of jour-
nal data. In the contrast, in the case of the journal mode (in
Fig. 9(b)), where journal data is generated for every write
request, we can see that I/O performance has improved.
These improvement of I/O performance is because the
proposed journal separation scheme reduces garbage
collection overhead. As a result, our proposed scheme not
only reduces write amplification but also improves I/O
performance of ZNS SSDs.

Ⅵ. CONCLUSION

The NAND flash memory based SSD is most popular
storage device because of its outstanding performance.
However, SSDs suffer from garbage collection overhead
due to the out-place update scheme that addresses the erase-
before-write constraint of NAND flash memory. To reduce
write amplification incurred by garbage collection, data
having similar update pattern should be placed in the same

NAND block. The ZNS SSD, a new type of SSD, can min-
imize the garbage collection overhead by allowing the host
to directly manages data placement. However, legacy jour-
naling file systems still cannot use the advantages of ZNS
SSDs. Therefore, in this paper, we proposed the journal sep-
arating scheme which allocates journal-only zone for jour-
nal data to separate journal data from file data. The pro-
posed scheme is implemented in Linux kernel and carefully
evaluated. The experimental results show that, in various
journaling modes, the proposed journal separating scheme
can reduce the write amplification of the ZNS SSD by up
to 26.8% while improving I/O performance.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2022-
0-01201, Convergence security core talent training business
(Pusan National University)) and ITRC (Information Tech-
nology Research Center) support program (IITP-2022-
2020-0-01797) supervised by the IITP.

REFERENCES

[1] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. To-
mas, and L. Vivier, "The new ext4 filesystem: Current
status and future plans," in Proceedings of the Linux
Symposium, Ottawa, Canada, Jun. 2007.

[2] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, "Analysis and evolution of journaling
file systems," in Proceedings of the 2005 USENIX An-
nual Technical Conference, Anaheim, CA, Apr. 2005,
pp. 105-120.

[3] S. Kim and E. Lee, "Analysis and improvement of I/O
performance degradation by journaling in a virtualized
environment," The Journal of the Institute of Internet,
Broadcasting and Communication, vol. 16, no. 6, pp.
177-181, Dec. 2016.

[4] S. Son and S. Ahn, "Optimizing garbage collection
overhead of host-level flash translation layer for jour-
naling file systems," International Journal of Internet,
Broadcasting and Communication, vol. 13, no. 2, pp.
27-35, May 2021.

[5] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D.
L. Moal, G. R. Ganger, et al., "ZNS: Avoiding the block
interface tax for flash-based SSDs," in Proceedings of
the 2021 USENIX Annual Technical Conference, Jul.
2021, pp. 689-703.

[6] dm-zoned-tools, https://docs.kernel.org/admin-guide/d
evice-mapper/dm-zoned.html.

 (a) Ordered (b) Journal
Fig. 9. I/O performance evaluation results.

Separating the File System Journal to Reduce Write Amplification of Garbage Collection on ZNS SSDs

268

[7] J. Bhimani, J. Yang, Z. Yang, N. Mi, N. H. V. Krishna
Giri, and R. Pandurangan, et al., "Enhancing SSDs with
multi-stream: What? why? how?," in Proceedings of the
36th International Performance Computing and Com-
munications Conference, San Diego, CA, Dec. 2017.

[8] J. Yang, R. Pandurangan, C. Choi, and V. Balakrishnan,
"AutoStream: Automatic stream management for multi-
streamed SSDs," in Proceedings of the 10th ACM Inter-
national Systems and Storage Conference, Haifa Israel,
May 2017, pp. 1-11.

[9] E. Rho, K. Joshi, S. Shin, N. J. Shetty, J. Hwang, and S.
Cho, D. et al., "FStream: Managing flash streams in the
file system," in Proceedings of the 16th USENIX Con-
ference on File and Storage Technologies, Oakland, CA,
Feb. 2018, pp. 257-263.

[10] T. Kim, D. Hong, S. S. Hahn, M. Chun, S. Lee, and J.
Hwang, et al., "PCStream: Automatic stream alloca-
tion using program contexts," in Proceedings of the
10th USENIX Workshop on Hot Topics in Storage and
File Systems, Boston, MA, Jul. 2018.

[11] H. Yong, K. Jeong, J. Lee, and J. Kim, "vStream: Vir-
tual stream management for multi-streamed SSDs," in
Proceedings of 10th USENIX Workshop on Hot Topics
in Storage and File Systems, Boston, MA, Jul. 2018.

[12] S. Lim and D. Shin, "DStream: Dynamic memory
resizing for multi-streamed SSDs," in Proceedings of
the 2019 34th International Technical Conference on
Circuits/Systems, Computers and Communications,
JeJu, Korea, Aug. 2019, pp. 1-4.

[13] I. L. Picoli, N. Hedam, P. Bonnet, and P. Tözün,
"Open-channel SSD (What is it Good For)," in Pro-
ceedings of 10th Annual Conference on Innovative
Data Systems Research, Amsterdam, Netherlands, Jan.
2020.

[14] M. Bjørling, J. Gonzalez, and P. Bonnet, "LightNVM:
The Linux open-channel SSD Subsystem," in Pro-
ceedings of the 15th USENIX Conference on File and
Storage Technologies, Santa Clara, CA, Feb. 2017, pp.
359-373.

[15] Y. Du, J. Gu, Z. Xiao, and M. Huang, "SSW: A strictly
sequential writing method for open-channel SSD,"
Journal of Systems Architecture, vol. 109, p. 101828,
Oct. 2020.

[16] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M.
Bjørling, and H. S. Gunawi, "The CASE of FEMU:
Cheap, accurate, scalable and extensible flash emula-
tor," in Proceedings of the 16th USENIX Confer-
enceon File and Storage Technologies, Oakland, CA,
Feb. 2018, pp. 83-90.

[17] J. Axboe, 2021. Flexible I/O Tester, https://github.
com/axboe/fio.

[18] S. Lee, D. Shin, Y. Kim, and J. Kim, "LAST: Locality-

aware sector translation for NAND flash memory-
based storage systems," ACM SIGOPS Operating Sys-
tems Review, vol. 42, no. 6, pp. 36-42, Oct. 2008.

[19] G. Wu and X. He, "Delta-FTL: Improving SSD life-
time via exploiting content locality," in Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, Bern, Switzerland, Apr. 2012, pp. 253-266.

[20] NVM Express Base Specification 2.0c, https://nv mex-
press.org/wp-content/uploads/NVM-Express-Base-Sp
ecification-2.0c-2022.10.04-Ratified.pdf.

AUTHORS

Young-in Choi received the B.S. degree in
the Department of Physics from Pusan Na-
tional University, Busan, South Korea, in
2020. He is studying for a M.S. degree in
the School of Computer Science and Engi-
neering, Pusan National University, Busan,
South Korea. His interests include storage
technologies, I/O stack of operating system

and cloud computing.

Sungyong Ahn received the B.S. and Ph.D.
degree in the Department of Computer Sci-
ence and Engineering from Seoul National
University, Korea, in 2003 and 2012, re-
spectively. He worked at Samsung Elec-
tronics as a senior engineer from 2012 to
2017. In 2017, he joined the School of
Computer Science and Engineering, Pusan

National University, Busan, South Korea, where he is currently a
professor. His interests include operating systems, solid-state disk,
and emerging memory technologies.

